Первый ксерокс. История компании Xerox

В 1906 году в Рочестере (США) была основана компания Haloid Compani, которая занялась производством фотобумаги. Спустя несколько десятилетий (в 1947-ом) руководство фирмы приобрело патент копировального устройства, ранее разработанного Честером Карлсоном. Еще позже, 1958-ом, компанию переименовывают в Haloid Xerox, а в году 1961-ом – в Xerox Corporation. Это лишь некоторые моменты из истории известнейшего на сегодняшний день производителя копировальной техники и периферийных устройств. В действительности же, был ошеломляющий взлет, затем – практически крах, и наконец – возрождение. Все это касается компании Xerox.

Честер Карлсон – изобретатель копировального аппарата

В 30-ые годы прошлого столетия далеко не все американцы имели работу, которая нормально оплачивалась. Что касается изобретателя первой копировальной машины, Честера Карлсона, то ему и вовсе пришлось начинать зарабатывать деньги уже с двенадцати лет, совмещая работу и учебу в колледже, а затем в политехническом институте в Калифорнии. Учебное заведение Честер окончил, получив степень бакалавра в области физики.

Поработав дворником, уборщиком, помощником печатника, Карлсон разослал несколько десятков резюме. На одно из них откликнулся патентный отдел “П.Р.Мэллория и К0”, приняв молодого парня на работу. Задача заключалась в фотокопировании и рассылке копий чертежей. Заказчиками выступали различные фирмы.

Методы копирования в то время были “дедовскими”: трудопотери были огромными, брака было много. Именно по этой причине Честеру и пришла в голову мысль каким-то методом механизировать свой труд. Таким образом, чулан его маленькой квартиры стал лабораторией для проведения опытов и движения к цели. Через 3 года усиленной работы Карлсон с напарником получили первую копию, созданную с использованием электростатического метода. Получив патент, изобретатель начал предлагать продукт своего труда различным фирмам.

Xerox: от первой прибыли до миллионов долларов

Демонстрация работы первого копировального аппарата достаточно часто была неудачной: бумага портилась, копии получались размытыми. Это заставляло Карлсона искать кредиторов, без которых проведение дальнейших разработок было невозможным. 3000 тысячи долларов были выделены руководством фирмы “Беттел мемориал”, под опекой которой и трудился далее изобретатель. Партнером “Беттел мемориал” была компания Haloid. Позже образовалось совместное предприятие – “Рэнк-Ксерокс”.

После образования новой компании основной задачей изобретателя и команды являлось совершенствования аппарата модели 914, имевшей ряд недостатков. Сначала она в продажу поступала даже с огнетушителем. Причиной этому были частые возгорания бумаги. Со временем модель все же удалось сделать более совершенной, а благодаря телевизионному рекламному ролику она обрела популярность. С того времени эти аппараты начали поступать не только в продажу, но и сдавались в аренду.

В 1966 году компанией реализовывалась уже более совершенная модель 813. Она была в 6 раз меньше, чем 914-ая. Позже появилась модель 2400. Объем продаж с годами рос, и это выглядело так:

  • В 1959 году объем составил 32 миллиона долларов;
  • В 1961 – 61 миллион;
  • В 1962 – 104;
  • В 1968 – 1125.

Спад производства и потеря рынка сбыта, возвращение лидирующих позиций

Практически все успехи компании Xerox были связаны с отсутствием конкуренции на то время. После того, как позиции стали укреплять Kodak и IBM, у Xerox наступили тяжелые времена.

Практически крах компании заставил руководство искать самые различные пути решения накопившихся проблем. Одним из таковых стало обращение в консультационную фирму Недлера, который выявил основные проблемы и составил дальнейший план действий. Основными пунктами являлись:

  • Четкая и ясная формулировка задач;
  • Организация нововведений;
  • Перевод производства на новые рельсы.

Воплощение в жизнь новых идей было невозможным без новых знаний. С целью их обретения руководство Xerox обратилось к Филу Кросби с просьбой прочесть цикл лекций для высшего руководства фирмы на тему проблем качества. Встал вопрос и о полной переподготовке персонала. С целью его решения в Лисбурге был построен учебный комплекс.

К концу 1988 года 100 тысяч служащих Xerox прошли переподготовку, что дало отличные результаты: качество продукции стало заметно выше, прибыль начала расти. В этом же году французский, английский и голландский филиалы получили ряд наград за высокое качество продукции.

Год 1989-ый – один из самых удачных в истории компании: Xerox получает “приз Болдриджа”, чем сильно укрепляет позиции на рынке копировальной техники и периферийных устройств.

Владимир Фридкин

Доктор физико-математических наук профессор Владимир Михайлович Фридкин известен читателям "Науки и жизни" как литератор, автор увлекательных рассказов, в том числе об А. С. Пушкине и его времени. (Кстати, издательство "Физматгиз" собирается выпустить его новую книгу "Непридуманные рассказы о любви".) На просьбы написать научно-популярную статью по своей основной специальности - физике твердого тела Владимир Михайлович неизменно отвечал отказом. Говорил, что о физике не хочет писать популярно. Однако на этот раз он поступился своим принципом. И поводом послужило следующее событие. В мае этого года Международный комитет по фотографической науке (International Committee for Imaging Science) наградил В. Фридкина премией Берга за "выдающийся вклад в развитие необычных (бессеребряных) фотографических процессов и международное сотрудничество в этой области". Ксерография - фотографический процесс, опирающийся на чисто физические явления. В 1953 году В. М. Фридкин, только что окончивший Московский университет, создал первый ксерокс, а впоследствии развил теорию ксерографии. Сейчас ксерокс стоит в каждом учреждении и без ксерографии невозможны факсимильная связь и десятки других технологий. А пятьдесят лет тому назад это было чудо. И чудо это родилось в России. По поводу юбилея наш глубокоуважаемый автор согласился написать первую научно-популярную статью.

Наука и жизнь // Иллюстрации

Первооткрыватель ксерографии Честер Карлсон (1906-1968). Фото с дарственной надписью В. М. Фридкину (1965).

Болгарский академик Георгий Наджаков (1896-1981), открывший фотоэлектреты.

Международный комитет по фотографической науке наградил В. Фридкина (в мае 2002 года) премией Берга. Ее вручают один раз в четыре года за выдающийся вклад в этой области.

Первая электрофотография, полученная В. М. Фридкиным осенью 1953 года (фото с оригинала).

Так выглядел ЭФМ-1, первый ксерокс. 1953 год.

Основные стадии электрофотографии на фотоэлектрете: 1 - поляризация при освещении (через негатив); 2 - заземление электродов; 3 - проявление; 4 - перенос проявленного изображения с поверхности фотоэлектрета на бумагу; 5 - фиксация; 6 - очистка поверхности

Академик Алексей Васильевич Шубников (1887-1970) - известный русский кристаллограф, основатель Института кристаллографии АН России, учитель и наставник В. М. Фридкина.

Честер Карлсон и В. М. Фридкин (справа) в Институте кристаллографии РАН (1965) (одна из первых электрофотографий, снятых с натуры).

В лаборатории НИИПолиграфмаша. Справа налево: И. С. Желудев, Георгий Наджаков, Х. Билялетдинов, Т. Герасимова, В. М. Фридкин, А. А. Делова, Никифор Кашукеев (сотрудник Наджакова) (1956

Коллоквиум по электрофотографии в Мюнхене (1981). Слева - В. М. Фридкин - создатель первого ксерокса на фотоэлектретах. Справа - профессор Х. Кальман, благодаря работам которого ксерография на фотоэлектретах нашла применение в космосе.

На фото слева направо: русский ученый А. Шленский, профессор Жак Левинер - директор института, В. М. Фридкин.

В этой заметке я хочу рассказать об истории создания первого ксерокса. Тем более, что сделан он был в Москве и к этой истории я имею прямое отношение. Сегодня ксерография - основа множительной техники. Без нее не было бы ни факсов, ни принтеров компьютера.

Но рассказывать надо по порядку. Ведь ксерография - часть современной фотографии. Ее еще называют бессеребряной или сухой фотографией (от греческого слова "ксерокс" - сухой).

Датой рождения фотографии считают 1837 год, когда француз Жозеф Нисефор Ньепс получил первые изображения на пластинке, покрытой слоем светочувствительного асфальтового лака и подвергнутой освещению. Метод основан на том, что освещенные и неосвещенные участки пленки по-разному растворялись в лавандовом масле. Год спустя Луи Жак Дагер получил фотоизображение на пленке йодистого серебра. В пленке под действием света происходила фотохимическая реакция и возникало скрытое изображение, проявлявшееся парами ртути. Сейчас эти первые дагеротипы можно увидеть в Шалоне, в музее фотографии, недалеко от Парижа. (Фотография родилась в год гибели Пушкина. Поэтому его фотографий мы не знаем. А вот дагеротипы его детей известны.)

Современная галоидосеребряная фотография создана в 70-х годах XIX века, когда в качестве фотографического материала стали использовать бромосеребряные пленки, сенсибилизированные молекулами красителей. Молекулы красителя поглощают свет в видимой спектральной области, что в сотни раз увеличивает светочувствительность фотографических пленок. Это открыло путь к изобретению кино и применению фотографии в астрофизике, ядерной физике, физике элементарных частиц - практически во всех областях науки и техники. И не только в науке и технике. Без фотографии нельзя представить себе ни сегодняшней жизни, ни современной истории человеческой цивилизации.

До середины прошлого века фотография как наука была частью фотохимии, так как и образование скрытого изображения, и его проявление основывались на фотохимических процессах. Ксерография - новый фотографический процесс, опирающийся на чисто физические явления, использующие фотопроводимость полупроводников. И здесь надо рассказать обо всем, что привело к созданию первого ксерокса.

Основные события произошли независимо друг от друга в 1938 году по разные стороны Атлантики.

В небольшой комнате отеля "Астория" в Нью-Йорке (Лонг-Айленд) Честер Карлсон (1906-1968), физик, служивший в патентной конторе, проделал такой опыт: наэлектризовал трением пластинку поликристаллической серы и через пленку, несущую изображение, осветил ее. Сера - фотопровод ник. При освещении в фотопроводнике возникают носители тока, электроны, или дырки. Они разряжают освещенные участки фотопроводника, поэтому после световой экспозиции на поверхности серы возникает скрытое изображение, образованное заряженными и разряженными участками. Если опылить такую поверхность заряженным порошком, несущим противоположный заряд, частицы порошка проявят изображение. Для проявления Карлсон использовал трибоэлектрический эффект, давно известный в физике. Он смешал порошки сурика и серы (частицы которых, контактируя друг с другом, заряжаются противоположными зарядами) и опылил пластинку серы. Частицы красного сурика проявили скрытое изображение. На поверхности пластинки проступили строки: "Астория", 22 октября 1938 года. Эту дату и следует считать днем рождения ксерографии.

Конечно, в основе современной ксерографии лежит усовершенствованная технология. Заряжают фотопроводник не трением, а коронным разрядом. С его же помощью проявленное изображение переносится на бумагу, а затем фиксируется. В качестве фотопроводника используют материал более светочувствительный, чем сера, например аморфный сплав селена с теллуром.

В том же 1938 году работал в Париже на улице Воклен в институте Марии и Пьера Кюри молодой физик Георгий Наджаков (когда-то именно здесь супруги Кюри открыли естественную радиоактив ность радия). В лаборатории, которой руководил знаменитый французский физик Поль Ланжевен, Г. Наджаков открыл так называемые фотоэлектреты. Он обнаружил, что при освещении внешнего электрического поля некоторых фотопроводников в них возникает внутренняя электрическая поляризация, которая длительное время сохраняется в фотопроводнике. Внешне это напоминало магнитную поляризацию ферромагнетиков. Поэтому (по аналогии с магнитом) Наджаков назвал фотопроводник с постоянной электрической поляризацией электретом. Поляризацию фотоэлектрета можно разрушить при повторном освещении фотопроводника в отсутствие внешнего поля.

Сейчас механизм образования фотоэлектрета хорошо изучен. Он связан с локализацией носителей заряда (электронов и дырок) в глубоких ловушках, что и обеспечивает поляризации "долгую жизнь". Интересное совпадение: в качестве материала для фотоэлектрета Наджаков, как и Карлсон, использовал поликристаллическую серу.

Через пятнадцать лет эти два открытия неожиданно встретились и дали жизнь первому ксероксу. И здесь уже надо рассказывать о себе.

Физический факультет МГУ я закончил в декабре 1952 года, когда в стране бушевало "дело врачей". Окончил с отличием, еще студентом опубликовав две научные статьи. На работу меня не брали, а мать, врача-гематолога, выгнали из больницы. Не на что было жить. Отец, погибший в войну, был полиграфистом. Его друзья устроили меня в НИИПолиграфмаш: маленький институт при заводе, ютившийся в домиках-развалюшках за Текстильным институтом. Там за кульманами сидели несколько конструкторов, чертивших детали полиграфических машин. Физикой, как говорится, и не пахло. Директор, друг отца, завел меня в пустую комнату, где стояли стол и два стула, и сказал: "Займи себя чем-нибудь. Авось, скоро полегчает". Никто еще не знал, что полегчает через два года, после ХХ партийного съезда.

Времени я не терял. Ходил в Ленинку, читал журналы по физике, приобрел кое-какое оборудование. И вот тогда случайно наткнулся в литературе на статьи Наджакова и патент Карлсона. Мне пришла в голову идея осуществить новый фотографический процесс (я его назвал электрофотографией), в котором фотоэлектрет служил фоточувствительным слоем, а проявление проводилось с помощью трибоэлектрического эффекта (как у Карлсона). Новый фотографический процесс задумывался еще и как метод создания оптической памяти, поскольку, в отличие от процесса у Карлсона, фотоэлектрет не только формировал, но и запоминал изображение. Скрытое изображение могло храниться довольно долго, и его можно было проявить через длительное время после экспозиции.

Макет был сделан быстро. Следуя примеру Наджакова, я использовал поликристаллическую серу, а затем и другие фотопроводники, например сульфид цинка и кадмия. Проявление производилось порошком асфальта. На фото читатель может видеть самое первое изображение, полученное осенью 1953 года (оригиналом служил диапозитив). Вскоре на заводе сделали аппарат, который назвали ЭФМ-1 (электрофотографическая множительная машина). Цифра "1", видимо, означала, что за первой моделью последуют другие. Этот "исторический" аппарат изображен на рисунке, заимствованном из моей книги, вышедшей много лет спустя . Работа его понятна из схемы, показанной на рисунке.

На электрофотографию сбегалась смотреть "вся Москва". Ее показывали в кино и по телевидению. Приехал министр, и в институте состоялось совещание. Обсуждали, что делать дальше, как внедрять. В Вильнюсе под руководством талантливого инженера и изобретателя Ивана Иосифовича Жилевича организовали научный центр и назвали его "Институт электрографии" (до этого группа И. И. Жилевича в Вильнюсе считалась филиалом нашей лаборатории). В Кишиневе нашли завод, которому директивно поручили выпуск ЭФМ (в 1954 году слово "ксерокс" еще не вошло в употребление, а сам ксерокс появился на западном рынке только в конце 50-х годов).

Много лет спустя я узнал, что в США, в компании "Галоид" (позже переименованной в "Ксерокс"), в это же время стали появляться первые модели. Но, как я уже сказал, их работа основывалась на другом принципе.

Директор моего института купался в лучах славы: "Вот видишь, - говорил он, - я же тебе предсказывал..."

В 1955 году академик Алексей Васильевич Шубников, директор Института кристаллографии (где я работаю и поныне), пригласил меня в аспирантуру. Его заинтересовала тема электретов. Под непосредственным руководством профессора И. С. Желудева я написал диссертацию "Фотоэлектреты и электрофотографический процесс". Изменилось не только время, но и место работы: академический институт, богатая лаборатория и библиотека, условия для творческой работы. Однажды Алексей Васильевич предложил мне рассказать о моей работе на семинаре у П. Л. Капицы - в "капишнике", и Петр Леонидович очень тепло отозвался о работе, предсказав ей большое будущее.

Теперь, работая в Академии наук, я был связан и с внешним миром. Оказалось, что Георгий Наджаков, первооткрыватель электретов, стал вице-президентом Болгарской академии наук, у нас с ним завязалось тесное сотрудничество. В июне 1965 года нашу лабораторию в Институте кристаллографии посетил Честер Карлсон. Основатель ксерографии заинтересовался моими статьями. Нас вместе сфотографировали с помощью электрофотоаппарата на электрете. В конце 50-х годов профессор Колумбийского университета Хартмут Кальман с сотрудниками повторил мои эксперименты по электрофотографии на фотоэлектретах и нашел ей интересное применение в космической связи. Об этом он рассказал на коллоквиуме в Мюнхене, где мы встретились в 1981 году. За эти работы американское фотографическое общество наградило меня медалью Козара, а немецкое и японское - избрали почетным членом. Побывал я с докладом и в Институте Марии и Пьера Кюри в Париже, где когда-то Наджаков открыл фотоэлектрет.

Все эти годы я не порывал связи с НИИПолиграфмашем и перевез свой аппарат на новое место работы, хотя в начале 60-х занялся другой тематикой, и ЭФМ задвинули в дальний угол комнаты. В то время ксероксы у нас были редкостью. Они покупались за валюту и имелись только в важных учреждениях. Стояли они в специально охраняемых комнатах, где под расписку высокие начальники снимали копии документов. В нашем же институте каждый сотрудник мог снять копию нужной статьи или документа. Но это продолжалось недолго.

Как известно, в 60-х годах началась борьба с "самиздатом". Рукописи А. И. Солженицына и других запрещенных авторов ночами размножались на пишущих машинках на тонкой папиросной бумаге. А тут ксерокс стоит без присмотра! Ко мне пришли из дирекции и объявили, что машину следует разобрать и уничтожить. Я долго объяснял, что моя экспериментальная установка - первый в мире ксерокс, работающий по новому принципу. Все оказалось бесполезным. К Алексею Васильевичу я не пошел. Ксерокс разобрали и выбросили на свалку. Но одна деталь сохранилась. Пластинка фотоэлектрета имела зеркальную поверхность, и наши женщины приспособили ее в качестве зеркала в туалете. Мыла и туалетной бумаги там не было никогда, а вот зеркало появилось. Так бесславно завершилась судьба первого в мире ксерокса.

Читатель спросит, а как же завод в Кишиневе, Институт электрографии в Вильнюсе? Где они, советские ксероксы? Почему мы покупали и покупаем за валюту? Если бы только ксероксы... Наша российская наука во многих областях стояла и стоит во главе мирового прогресса. Но и по сей день мы не продаем изделий высокой технологии и кормимся нефтяной "трубой". Почему? На этот вопрос пусть ответит читатель.

V. M. Fridkin. The Phisics of the Electrophotographic Process. Focal Press, London, 1973.

Слоган: Technology. Document Management. Consulting Services.

Перефразировав классика коммунистической поэзии, можно сказать «Мы говорим копирование документов - подразумеваем Xerox» . Действительно, ведь практически повсеместно, в том числе и на территории всего бывшего СССР (куда этот бренд пришел аж в далеком 1968 году), слово «ксерокс» означает копию или копирование.

А началось все в 1906 году, когда в городе Рочестр, штат Нью-Йорк, была образована компания The Haloid Company , занимавшаяся производством и продажей фотобумаги. Достаточно длительное время развитие компании шло умеренными темпами.

1938 год ознаменовался открытием, что сделал Честер Карлсон, адвокат по профессии, изобретатель по увлечению. В своей импровизированной лаборатории он создает первый в мире «электрофотографический» отпечаток, когда изображение переносится на бумагу, посредством светочувствительного полупроводника и порошка-красителя. Хорошо разбираясь в вопросах авторского права, Карлсон сразу же запатентовал свое изобретение - патент номер 2,297,691, от 1942 года. Однако, прошло почти десять лет, прежде чем изобретение заинтересовало производителей.

В 1947 году The Haloid Company выкупает у Карлсона все права на его электрофотографию. А в следующем году термин был изменен на более благозвучную «ксерографию» (от греческих слов, «xeros» «сухой» и «grapho» «писать» ). Тогда же рождается и торговая марка Xerox . В 1949 году в продаже появляется первый ксерокопировальный аппарат с незатейливым названием Model A.

Успех данной продукции на рынке привел к тому, что 16 апреля 1958 года компания меняет название на Haloid Xerox Inc . Делается это с целью подчеркнуть, что основной деятельностью компании отныне будет ксерография.


В 1959 году появляется устройство Xerox 914. Это был первый полностью автоматический офисный копировальный аппарат, использующий обычную бумагу. Устройство ожидал огромный коммерческий успех, приведший к тому, что 18 апреля 1961 года компания изменила название на Xerox Corporation .

К 1970 году руководство Xerox решает, что захватив «бумажную» сферу офиса, пора браться и за сферу обработки данных, бросив вызов IBM . Создается исследовательский центр Xerox Computer Services , расположенный в Пало-Альто, Калифорния. Для этого была куплена компания Scientific Data Systems , занимавшаяся ЭВМ.

Компании Xerox принадлежит множество выдающихся изобретений. Однако, воспользоваться ими в полной мере она не сумела. Потребители воспринимали компанию исключительно как создателя систем для копирования. Как производителю вычислительных систем куда более доверяли IBM . Одним из самых ярких достижений Scientific Data Systems является компьютерная мышь и графический интерфейс, реализованные на компьютере Xerox ALTO в 1974 году. Однако ни то, ни другое не заинтересовало руководство компании, которое просто не увидело в них никаких перспектив. Зато заинтересовали Стива Джобса, побывавшего «с дружественным визитом» в лаборатории. Он сразу же понял, что перед ним гениальное изобретение. В результате, компания Apple Computers стала первой оснастившей свои компьютеры графическим интерфейсом и мышами. Понять всю глубину потери Xerox сумела слишком поздно. За нее позже «отомстил» Билл Гейтс, «позаимствовавший» графический интерфейс у компании Джобса.

Достижения Xerox сыграли огромную роль в деле развития лазерных принтеров и компьютерных сетей. В итоге ей удалось потеснить IBM в деле вывода информации на бумагу, но никак не в деле обработки данных.

Но главную головную боль Xerox принесла вовсе на IBM , а японские производители. Когда на рынок США начала поставлять свою продукцию Canon , никто не воспринял ее всерьез. Ведь была она простой и дешевой, рассчитанной на малый бизнес, а то и вовсе домашнее использование. Но время показало правильность японского подхода, а Xerox лишилась звания абсолютного лидера в деле копирования документов.

Подчеркнуть свою принадлежность к миру документов компания решает в 1994 году, представив миру новый логотип — «The Document Company - Xerox» . Впрочем, в 2004 году его упростили. А четырьмя годами позже представили «Красный шар» , который иные пользователи в шутку тут же окрестили «Киргизский флаг» .

На сегодняшний день Xerox остается одним из крупнейших производителей оборудования для офисов разного уровня. Помимо копировальных машин производятся принтеры, факсы и многое другое. Занимается компания и канцелярской продукцией. Xerox принадлежат тысячи патентов самой разной тематики. Ее доходы исчисляются десятками миллиардов долларов США.

За годы своего существования Xerox поглотила не одну компанию, связанную с разработкой ПО или созданием вычислительных систем. Крупнейшим совместным предприятием является Fuji Xerox , основанное в 1962 году, работающее с техникой Xerox и аксессуарами для нее в Азиатском и Тихоокеанском регионе. На территории Индии функционирует Xerox India (ранее Modi Xerox ). Существует также и Rank Xerox – совместное предприятие c Rank Organisation из Великобритании, занимающееся производством и реализацией техники Xerox в Европе и Африке.

Сегодня копировальная техника — жизненно необходимый инструмент для многих организаций и компаний, ещё не перешедших на полный внутренний электронный документооборот. Марка Xerox давно стала нарицательным названием для всех копиров.

Однако у нас мог быть отечественный «ксерокс». Попытки создать аналогичную технику проводились ещё в середине 1950-х, одновременно с разработками самого Xerox. Но государство тогда видело для себя угрозу в неконтролируемом распространении данных, поэтому намеренно тормозило инновации.

Считалось, что в Советском Союзе при плановой экономике вопрос оперативного копирования документов не стоял так остро, как в странах со свободным рынком. В многочисленных советских учреждениях эту проблему поначалу решали фотографическим способом и микрофильмованием. Техническую и конструкторскую документацию приходилось переносить вручную на кальку, размножать с помощью светокопирования. Всё это было долго, сложно и неудобно.

«Ксерокс» Фридкина

Пожалуй, что самая любопытная история связана с учёным Владимиром Фридкиным, чьё изобретение предвосхитило развитие индустрии на целое десятилетие.

Фридкин окончил в 1952 году с красным дипломом физфак Московского госуниверситата. Но долго не мог начти работу по специальности из-за проблем «по пятому пункту». Антисемитская кампания, проводившаяся в то время, сводила к нулю преимущества красного диплома.

Лишь спустя несколько месяцев Владимиру Фридкину удалось устроиться в НИИ полиграфического машиностроения, хотя изначально он хотел стать ядерным физиком.

В НИИ Фридкину предоставили для работы совершенно пустой кабинет — там стояли лишь стол и стул. Делать что-то продуктивное в таких условиях было непросто.

Фридкин много времени проводил в читальном зале библиотеки имени Ленина, где хранилось большое собрание документов, научных работ и книг со всего мира. Однажды он прочитал статью американского физика Честера Карлсона, которая была посвящена фотокопированию. Тогда в Советском Союзе ничего подобного не было. Фридкин загорелся идеей создать копировальный автомат.

Он обратился в отдел электротехники своего НИИ и попросил выделить ему генератор тока высокого напряжения. На родном физфаке МГУ он раздобыл кристаллы серы и необходимый фотоувеличитель. Все эксперименты изобретатель проводил в своём маленьком кабинете. Ему удалось собрать устройство, названное «Электроскопическим копировальным устройством №1». Цифра «1» в названии подразумевала, что за первой моделью последуют другие.

Владимир Фридкин :

Времени я не терял. Ходил в Ленинку, читал журналы по физике, приобрел кое-какое оборудование. Мне пришла в голову идея осуществить новый фотографический процесс в котором фотоэлектрет служил фоточувствительным слоем, а проявление проводилось с помощью трибоэлектрического эффекта. Процесс задумывался ещё и как метод создания оптической памяти. Фотоэлектрет не только формировал, но и запоминал изображение. Скрытое изображение могло храниться довольно долго, и его можно было проявить через длительное время после экспозиции. Макет был сделан быстро. Я использовал поликристаллическую серу, а затем и другие фотопроводники, например сульфид цинка и кадмия. Проявление производилось порошком асфальта.

Сначала Фридкин пробовал копировать страницу из книги, приказы по институту, затем перешёл к фотографиям. Однажды он сделал копию со снимка московской улицы и показал её директору своего НИИ. Тот восторженно воскликнул: «Ты хоть сам-то понимаешь, что изобрел?!».

Инженерам института тут же был отдан приказ довести до ума существовавшие наработки и собрать образец машины, который смог бы делать фотокопии. Таким образом, Фридкин создал первую в СССР копировальную машину. Стояла осень 1953 года.

Владимир Фридкин :

Много лет спустя я узнал, что в США, в компании «Галоид», позже переименованной в «Ксерокс», в это же время стали появляться первые модели. Но их работа основывалась на другом принципе.

Первый советский копировальный аппарат представлял из себя коробку высотой около одного метра и шириной полметра. На ней был закреплён генератор тока и два цилиндра. Устройство оказалось удивительно простым и понятным. Посмотреть на изобретение приезжал лично министр. Он был настолько впечатлён увиденным, что поручил организовать массовое производство новых аппаратов на заводе в Кишинёве. А в Вильнюсе открыли специальный НИИ, занимавшийся исследованиями электрографии.

Владимир Фридкин, которому тогда было всего 22 года, стал заместителем директора института. Он получил хорошую денежную премию. Про изобретателя даже сняли телефильм, посвящённый достижениям советской науки.

В 1955 году создатель советского копировального аппарата перешёл на работу в Институт кристаллографии. Собственное изобретение он забрал с собой. Почти каждый день к нему кабинет заходили коллеги, чтобы скопировать какую-нибудь научную статью из иностранного журнала. Но в 1957 году всё это закончилось. «Как-то ко мне пришла заведующая спецотделом — такие отделы были в каждом институте — и сообщила, что ксерокс надо списать», — рассказывал Фридкин. КГБ считала, что машина может быть использована для распространения запрещённых в СССР материалов.

Власти тогда не поощрали развитие связи. Например, каждый радиоприёмник в обязательном порядке регистрировался. Органы госбезопасности требовали хранить оттиски со всех печатных машинок, если потребуется установить автора распечатки. Шла борьба с «самиздатом». Рукописи запрещённых авторов ночами размножались на пишущих машинках. А тут обнаружился оцелый копировальный аппарат без присмотра.

Вскоре было закрыто и производство новых аппаратов. Первую из собранных моделей разобрали на части. По легенде, наиболее её ценную часть — пластину полупроводника — сохранили и повесили в женском туалете института как зеркало.

Спустя годы Советский Союз стал закупать копировальные аппараты за границей. Это была техника фирмы Xerox. Один из таких аппаратов был привезён и в Институт кристаллографии, в котором продолжал работать Фридкин. Но использовать технику уже было можно только под надзором специального человека, следившего за тем, что и кем копируется.

«РЭМ» и «Эра»

В конце 1960-х в СССР вернулись к идее создания своих копировальных аппаратов. На Казанском оптико-механическом заводе начали собирать устройство «РЭМ» — ротационную электрографическую машину. Её выпускали в двух модификациях — РЭМ-420 и РЭМ-620. Цифры обозначали ширину рулонной бумаги. Мощность электрооборудования первых аппаратов была очень большой. Например, РЭМ-620 потреблял почти 8 кВт электроэнергии. Весили они около тонны и работало на них по два человека.

Чуть позже аналогичные аппараты стали делать другие заводы — БелОМО и Грозненский завод полиграфических машин под маркой «Эра». Примечательно, что в Грозном делали малоформатные аппараты под А3 и А4, которые работали не только с рулонной бумагой, но и с отдельными листами.

«РЭМ» и «Эра», в отличие от аппарата Фридкина, по принципу действия и оптической схеме во многом повторяли «ксероксы» 1950-60-х годов. Но когда западные модели делались всё более надёжными, эргономичными и компактными, главным преимуществом советских была низкая стоимость расходных материалов.

Первые копировальные аппараты советского производства были ещё и достаточно пожароопасны. При остановке движения бумаги она практически сразу же загоралась под действием потока тепла от инфракрасного излучателя. В помещениях, где стояла техника, приходилось устанавливать специальную систему пожаротушения, а на корпусе аппарата крепить углекислотный огнетушитель.

Среди тех, кто работал с аппаратами «Эоа» и «РЭМ», бытовала такая поговорка — «Оператор, который не горел и не тушил аппарат, как танкист, который в бою не был». При приёме на работу кадровики всерьёз спрашивали: «Сколько раз горели?».

Подобную технику производили до конца 1980-х годов. На этом история советских «ксероксов» закончилась.

Владимир Фридкин :

В 1965 году нашу лабораторию в Институте кристаллографии посетил Честер Карлсон. Основатель ксерографии заинтересовался моими статьями. Нас вместе сфотографировали с помощью электрофотоаппарата на электрете. В конце 50-х годов профессор Колумбийского университета Хартмут Кальман с сотрудниками повторил мои эксперименты по электрофотографии на фотоэлектретах и нашёл ей интересное применение в космической связи. Об этом он рассказал на коллоквиуме в Мюнхене, где мы встретились в 1981 году. За эти работы американское фотографическое общество наградило меня медалью Козара, а немецкое и японское — избрали почетным членом.

Кроме того, в 2002 году Международный комитет по фотографической науке (International Committee for Imaging Science) наградил Владимираа Фридкина премией Берга за «выдающийся вклад в развитие необычных (бессеребряных) фотографических процессов и международное сотрудничество в этой области».

Сейчас изобретателю 87 лет.

ВВЕДЕНИЕ

Невозможно представить себе современную компанию, которая бы не применяла в своей повседневной работе средства автоматизации офиса. Компьютеры и оргтехника не только коренным образом изменили облик организаций, стиль их работы, но и обеспечивают большую мобильность и эффективность деятельности.

Громадное количество всевозможных компонентов компьютерных комплексов, предлагаемых на рынке, создаёт значительные проблемы в их правильном применении и интегрировании.

Комплекс офисного оборудования должен быть не только технически современным, но и оптимальным по составу, чётко ориентированным на решение конкретных задач и подкреплённым мощной сервисной поддержкой.

Копирование документов - один из важных этапов оперативной подготовки необходимой конструкторской, технологической, справочно-информационной, управленческой документации. Выбор способа копирования зависит от тиража копий, срока их изготовления, необходимого качества и стоимости изготовления копий.

ИСТОРИЯ ВОЗНИКНОВЕНИЯ КОПИРОВАЛЬНЫХ АППАРАТОВ

Процесс документирования обычно связан с необходимостью копирования и размножения составленных документов. В древности и в средние века с этой целью приходилось переписывать документы от руки. Изобретение книгопечатания позволило в массовом порядке размножать информацию. Однако этот способ был невыгоден для получения небольшого количества копий. Поэтому и после изобретения книгопечатания ещё длительное время в учреждениях по-прежнему продолжали трудиться многочисленные переписчики.

С целью ускорить и облегчить этот процесс с начала XIX столетия стала использоваться копировальная бумага ("копирка"). "Устройство для получения копий писем и документов" запатентовал в 1806г. англичанин Р.Веджвуд. В изобретённом им устройстве тонкая бумага пропитывалась синими чернилами, а затем высушивалась между двумя листами промокашки. Полученную таким способом "копирку" можно было подкладывать под лист бумаги при письме и получать его копию. Начавшийся в концеXIX века массовый выпуск пишущих машин привёл к появлению чёрной копирки, близкой по качеству к современной. Её использование позволило изготавливать несколько копий документа. В настоящее время для пропитки копировальных бумаг используются примерно те же красящие вещества, что и при изготовлении лент для пишущих машин.

Научно-технический прогресс привёл к изобретению в XIX-XX веках целого ряда оригинальных технологий копирования и тиражирования документов и соответствующих средств репрографии и оперативной полиграфии. К числу наиболее распространённых в этот период способов копирования относились такие как:

Фотографический (один из давних способов копирования). Фотокопирование производится как с помощью обычных фотоаппаратов, так и с использованием специальной фототехники. Разновидностью фотокопирования является микрофотокопирование (микрофильмирование) - изготовление фотографическим способом микроформ, т.е. уменьшенных копий документов. Для этого также используется обычная и специальная фототехника.

Диазографический (метод светокопирования) - используется обычно при копировании большеформатной чертёжно-технической документации на специальную светочувствительную (к ультрафиолетовым лучам) диазобумагу;

Термография (термографическое копирование) - в основе лежит принцип облучения документа интенсивным потоком тепловых инфракрасных лучей, осуществляющих местный нагрев, который затем передаётся термореактивной бумаге;

Ксерография (электрографическое копирование) - в настоящее время является наиболее распространённым. С помощью электрографических копировальных аппаратов, которые обычно называют ксероксами, в мире изготавливается свыше половины всех копий. Этот метод позволяет быстро, качественно и сравнительно экономично копировать необходимые документы. Причём в процессе копирования возможно масштабирование и редактирование документов.

Копировальная техника экономически выгодна для получения ограниченного количества копий (до 25 экземпляров). Однако в процессе управления, в сфере образования, бизнеса, банковской сфере и др. очень часто необходимо размножать документы тиражом в 50-100 и более экземпляров. До недавних пор с этой целью использовали традиционные методы оперативной полиграфии - гектографическую (спиртовую), офсетную (ротапринтную), трафаретную (ротаторную) печать. Однако в силу разных причин (невысокое качество продукции, сложное в обращении и громоздкое оборудование и т.п.) эти методы уходят в прошлое.

На смену им, начиная с 1980-х годов, приходит ризография (электронно-трафаретная печать) как наиболее оперативный и перспективный способ оперативной полиграфии. Она осуществляется с помощью цифровых множительных аппаратов - ризографов, а также дупликаторов. В этих аппаратах соединены сканер, лазер для подготовки печатной формы и трафаретный печатный механизм для получения оттиска. Такие аппараты высокоэкономичны, имеют большую производительность, высокое качество изображения, неприхотливы к качеству бумаги, экологически чисты. Они позволяют осуществлять тиражирование непосредственно с компьютера (со скоростью до 130 оттисков в минуту), напоминая работу с обычным лазерным принтером. Эти аппараты фактически могут заменить типографию.

Таким образом, современные средства документирования являются результатом длительного и непрерывного процесса их развития и совершенствования - от простейших орудий для письма до сложных автоматических комплексов составления, редактирования и размножения документов. Арсенал этих средств в настоящее время чрезвычайно разнообразен. Они позволяют быстро, качественно и относительно недорого создавать практически любые документы.