Характеристика ниобия. Применение ниобия в металлургии и промышленности

0,145 нм, ионные радиусы (в скобках указано координац. число) Nb 2+ 0,085 нм (6), Nb 3+ 0,086 нм (6), Nb 4+ 0,082 нм (6), 0,092 нм (8), Nb 5 + 0,062 нм (4), 0,078 нм (6), 0,083 нм (7), 0,088 нм (8).

Содержание в земной коре 2 . 10 -3 % по массе. Встречается в природе обычно вместе с Та. Наиб. важные минералы -колумбит-танталит, пирохлор и лопарит. Колумбит-танталит (Fe,Mn)(Nb,Ta) 2 O 6 содержит 82-86% оксидов Nb и Та. При содержании ниобия выше, чем Та, минерал наз. колумбитом, при обратном соотношении - танталитом. Пирохлор (Na,Ca,Ce) 2 (Nb,Ti) 2 (OH,F)O 6 обычно содержит 37,5-65,6% Nb 2 O 5 ; лопарит (Na,Ce,Ca,SrXNb,Ti)O 3 -8-10% Nb 2 O 5 . Минералы ниобия слабо парамагнитны и радиоактивны из-за примесей U и Th.

Колумбит встречается в изверженных пегматитах, биотитах и щелочных гранитах, иногда-в россыпных месторождениях (Нигерия), его часто добывают как побочный продукт обогащения оловянных концентратов. Пирохлор содержится в карбонатитах, щелочных породах (Канада), нефелин-сиенитовых пегматитах, в элювиальных продуктах выветривания сиенито-карбонатитов (Бразилия). Крупные залежи лопарита имеются в СССР.

Общие мировые запасы ниобия (без СССР) оценивались (1980) в 18 млн. т, в пром. месторождениях-ок. 3,4 млн. т (из них 3,2 млн.т в Бразилии).

Свойства. Ниобий-блестящий серебристо-серый металл ; кри-сталлич. решетка объемноцентрир. кубическая типа a-Fe, а = 0,3294 нм, z = 2, пространств. группа Im3m; т. пл. 2477 °С, т. кип. ок. 4760 °С; плотн. 8,57 г/см 3 ; С 0 р 24,44Дж/(моль . К); DH 0 пл 31,0 кДж/моль (2477 °С), DH 0 возг 720кДж/моль (0 К), DH 0 исп 662 кДж/моль (4760 °С); S 0 298 36,27 ДжДмоль К); ур-ние температурной зависимости давления пара над жидким ниобием: lgр(Па) = 13,877-40169/T (2304 <= Т<= 2596 К); температурный коэф. линейного расширения 7,1 . 10 -6 К -1 (0-100 °С); теплопроводность 52,3 Вт/(м. К) при 20 °С и 65,2 Вт/(м. К) при 600 °С; r 1,522 . 10 -9 Ом. м при 0°С, температурный коэф. r 3,95 х х 10 -3 К -1 (0-100°С). Ниобий парамагнитен, уд. магн. восприимчивость + 2,28 . 10 -6 (18 °С). Т-ра перехода в сверхпрово-дящее состояние 9,28 К.

Чистый ниобий легко обрабатывается давлением на холоду; жаропрочен; s раст 342 МПа (20 °С) и 312 МПа (800 °С); относит. удлинение 19,2% (20 °С) и 20,7% (800 °С); твердость по Бринеллю 450 МПа для чистого металла и 750-1800 МПа для технического. Примеси H,N,C и О снижают пластичность ниоби\ и повышают его твердость . В хрупкое состояние ниобий переходит при т-рах от - 100 до - 200°С.

Химически ниобий довольно устойчив. В компактном виде начинает окисляться на воздухе выше 200 °С, давая ниобия оксиды , взаимод. с Сl 2 выше 200 °С, с F 2 и Н 2 -выше 250 °С (интенсивно с Н 2 -при 360 °C), с N 2 -вышe 400 °С, с С и углеводородами-при 1200-1600 °С. На холоду не раств. в царской водке , соляной и серной к-тах, не реагирует с HNO 3 , Н 3 РО 4 , НСlО 4 , водным р-ром NH 3 . Устойчив к расплавл. Li, Na, К, Sn, Pb, Bi, а также Hg. Раств. во фтористоводородной к-те, ее смесях с HNO 3 , в расплавл. NH 4 HF 2 и NaOH. Обратимо поглощает Н 2 , образуя твердый р-р внедрения (до 10 ат. % Н) и гидрид состава NbH x (x = 0,7-1,0) с ромбич. кристаллич. решеткой; для NbH 0,761 DH 0 обр - 74,0 кДж/моль ; р-римость водорода в ниобии меняется от 104 см 3 /г при 20 °С до 4,0 см 3 /г при 900 °С, выше 1000 °С Н 2 практически не раств. в ниобии. Гидриды образуются также на первых стадиях растворения ниобия во фтористоводородной к-те, ее смеси с HNO 3 и расплаве NH 4 HF 2 , а также при электролизе к-т с катодом из ниобия (таким путем получен NbH 2,00). Гидрирование ниобия и дегидрирование при нагр. используют для получения мелкодисперсного металла .

При взаимодействии ниобия с С образуется одна из трех фаз: твердый р-р С в металле , Nb 2 C или NbC. Твердый р-р содержит 2 ат. % С при 2000 °С; р-римость С в ниобии резко падает с понижением т-ры. К а р б и д Nb 2 C образует три полиморфные модификации: до 1230 °С устойчива ромбич. a-фаза (пространств. группа Pbcn), при 1230°С она превращ. в гексагoн. b-фазу (пространств. группа Р6 3 22), к-рая при 2450 °С переходит в др. гексагoн. -g-фазу (пространств. группа P6 3 /mmc); т. пл. ок. 2990 °С (инконгруэнтно, с выделением твердого NbС x). Для a-Nb 2 C: C 0 p 63,51 Дж/(моль . К); DH 0 обр - 188 кДж/моль ; S 0 298 64,10 ДжДмоль. К); т-ра перехода в сверхпроводящее состояние 9,2 К. Карбид NbC-кристаллы серого или серо-коричневого цвета, область гомогенности от NbC 0,70 до NbC 1,0 ; при 377 °С наблюдается полиморфный переход, высокотемпературная кубич. фаза (а = 0,4458 нм, пространств. группа Рт3т, плотн. 7,81 г/см 3) инконгруэнтно плавится ок. 3390 °С; DH 0 обр - 135 кДж/моль ; S 0 298 35,4 ДжДмоль К); т-ра перехода в сверхпроводящее состояние 12,1 К. Фаза NbC 0,80 имеет т. пл. ~ 3620 °С. NbC образует твердые р-ры с ТаС, TiC, ZrC и др. В пром-сти NbC получают взаимод. Nb 2 O 5 с сажей ок. 1800 °С в атмосфере Н 2 ; м.б. также получен из элементов или нагреванием летучих галогенидов ниобия в атмосфере углеводородов до 2300-2900 °С.

В системе Nb-N образуются: твердый р-р внедрения азота в ниобии (a-фаза), н и т р и д ы Nb 2 N (гексагон. р-фа-за) и NbN (кубич. d- и гексагон. q-фазы) и еще неск. фаз. Р-римость N 2 в ниобии при атм. давлении описывается ур-нием с = 180ехр(- 57300/RT) ат. % (1073 <= T<= 1873 К). b-Фаза гомогенна в области NbN 0,4 -NbN 0,5 ; для нее а = 0,3056 нм с = 0,4995 нм, пространств. группа Р6 3 /ттс- С 0 p 67 ДжДмоль. К); DH 0 обр - 249 кДж/моль ; S 0 298 79 ДжДмоль. К). Светло-серая с желтоватым блеском d-фаза гомогенна в области NbN 0,88 -NbN l,06 , для нее а = 0,4373-0,4397 нм, пространств. группа Fm3m. Для q-фа-зы: С 0 р 37,5 ДжДмоль. К), DH 0 oбр -234 кДж/моль , S 0 298 33,3 ДжДмоль К). Нитриды не раств. в соляной к-те, HNO 3 и H 2 SO 4 , при кипячении со щелочами выделяют NH 3 , при нагр. на воздухе окисляются. Т-ры перехода в сверхпроводящее состояние для NbN x с x = 0,80, 0,90, 0,93 и 1,00 равны соотв. 13,8, 16,0, 16,3 и 16,05 К. Нитриды получают нагреванием металла или гидрида ниобия в атмосфере N 2 или NH 3 до 1100-1800 °С или взаимод. летучих галогенидов ниобия с NH 3 . Известны карбо- (получают взаимод. Nb, N 2 или NH 3 с углеводородами выше 1200°С) и оксинитриды ниобия.

Получение. Ок. 95% ниобия получают из пирохлоровых, тан-талит-колумбитовых и лопаритовых руд . Руды обогащают гравитац. методами и флотацией , а также электромагн. или радиометрич. сепарацией , выделяя пирохлоровые и колум-битовые концентраты с содержанием Nb 2 O 5 до 60%.

Концентраты перерабатывают до феррониобия или техн. Nb 2 O 5 , реже-до NbCl 5 и K 2 NbF 7 (см. Ниобия галогениды). Металлический ниобий получают из Nb 2 O 5 , K 2 NbF 7 или NbCl 5 .

При произ-ве феррониобия смесь пирохлоровых концентратов с гематитом Fe 2 O 3 , порошкообразным Аl и добавками флюса загружают в вертикальные водоохлаждаемые стальные или медные реакторы и с помощью спец. запала инициируют экзотермич. р-ции: 3Nb 2 O 5 + 10Al6Nb + + 5Аl 2 О 3 ; Fe 2 O 3 + 2Аl2Fe + Al 2 O 3 . Затем сливают шлак, охлаждают и измельчают полученный сплав . Выход ниобия в слиток при массе загрузки концентрата до 18 т достигает 98%.

Техн. Nb 2 O 5 получают выщелачиванием Nb и Та из концентратов и шлаков оловянной плавки действием фтористоводородной к-ты с послед. очисткой и разделением Nb и Та экстракцией 100%-ным трибутилфосфатом , циклогекса-ноном, метилизобутилкетоном (реже-др. экстрагентами), реэкстракцией ниобия действием водного р-ра NH 4 F, осаждением из реэкстракта гидроксида Nb, его сушкой и прокаливанием.

По сульфатному способу концентраты обрабатывают H 2 SO 4 или ее смесью с (NH 4) 2 SO 4 при 150-300 °С, выщелачивают р-римые сульфаты водой , отделяют Nb и Та от Ti, разделяют и очищают Nb и Та экстракцией их фторидных или оксофторидных комплексов, выделяя затем Nb 2 O 5 .

Хлоридный способ предусматривает смешивание концентрата с коксом , брикетирование и хлорирование брикетов в шахтной печи при 700-800 °С или хлорирование непосредственно порошкообразного концентрата и кокса в солевом хлоридном расплаве на основе NaCl и КСl. Далее проводят отделение летучих хлоридов Nb и Та, их разделение и очистку ректификацией и раздельный гидролиз водой с прокаливанием осадка гидроксида ниобия. Иногда хлорируют феррониобий или отходы металла .

Восстанавливают Nb 2 O 5 до металла алюмино- или карбо-термически либо нагреванием смеси Nb 2 O 5 и NbC при 1800-1900 °С в вакууме . Применяют также натриетермич. восстановление K 2 NbF 7 , электролитич. восстановление Nb 2 O 5 или K 2 NbF 7 в расплаве K 2 NbF 7 и хлоридов щелочных металлов . Особо чистый металл или покрытия из ниобия на др. металлах получают восстановлением NbCl 5 водородом при т-рах выше 1000°С.

Порошкообразный ниобий брикетируют, спекают штабики и переплавляют их в вакууме в электродуговых или электроннолучевых печах . На начальных стадиях очистки применяют также

В др.-греч. мифологии * а. niobium; н. Niob, Niobium; ф. niobium; и. niobio), — химический элемент V группы периодической системы Менделеева , атомный номер 41, атомная масса 92,9064. Имеет один природный изотоп 93 Nb.

Оксид ниобия выделен впервые английским химиком Ч. Хатчетом в 1801 из колумбита . Металлический ниобий получил в 1866 шведский учёный К. В. Бломстранд.

Ниобий свойства

Ниобий- металл стального цвета, имеет объёмно-центрированную кубического решётку с а=0,3294 нм; плотность 8570 кг/м 3 ; t плавления2500°С, t кипения4927°С; теплоёмкость (298 К) 24,6 Дж/(моль.К); теплопроводность (273 К) 51,4 Вт/(м.К); температурный коэффициент линейного расширения (63-1103 К) 7,9.10 -6 К -1 ; удельное электрическое сопротивление (293 К) 16.10 -8 Ом.м; термический коэффициент электрического сопротивления (273 К) 3,95.10 -3 К -1 . Температура перехода в сверхпроводящее состояние 9,46 К.

Степень окисления +5, реже от +1 до +4. По химическим свойствам близок к танталу, чрезвычайно устойчив к холоду и при небольшом нагревании к действию многих агрессивных сред, в т.ч. и кислот. Ниобий растворяет только плавиковая кислота, её смесь с азотной кислотой и щёлочи. Амфотерен. При взаимодействии с галогенами образует галогениды ниобия. При сплавлении Nb 2 О 5 с содой получают соли ниобиевых кислот — ниобаты, хотя сами кислоты не существуют в свободном состоянии. Ниобий может образовывать двойные соли и комплексные соединения. Нетоксичен.

Получение и применение

Для получения ниобия ниобиевый концентрат сплавляют с едким натром или содой и образующийся сплав выщелачивают. Содержащиеся в нерастворившемся осадке Nb и Ta разделяют, оксид ниобия восстанавливают отдельно от оксида тантала. Компактный ниобий получают методами порошковой металлургии, электродуговой, вакуумной и электроннолучевой плавки.

Ниобий — один из основных компонентов при легировании жаропрочных сталей и сплавов. Ниобий и его сплавы используются как конструкционные материалы для деталей реактивных двигателей, ракет, газовых турбин, химической аппаратуры, электронных приборов, электрических конденсаторов, сверхпроводящих устройств. Ниобаты широко применяют как сегнетоэлектрики, пьезоэлектрики, лазерные материалы.

Ниобий (лат. Niobium), Nb, химический элемент V группы периодической системы Менделеева; атомный номер 41, атомная масса 92,9064; металл серо-стального цвета. Элемент имеет один природный изотоп 93 Nb.

Ниобий открыт в 1801 году английским ученым Ч. Хатчетом (1765-1847) в минерале, найденном в Колумбии, и назван им "колумбием". В 1844 году немецкий химик Г. Роэз (1795-1864) обнаружил "новый" элемент и назвал его "ниобием" в честь дочери Тантала Ниобы, чем подчеркнул сходство между Ниобием и танталом. Позднее было установлено, что Ниобий тот же элемент, что и Колумбий.

Распространение Ниобия в природе. Среднее содержание Ниобий в земной коре (кларк) 2·10 -3 % по массе. Только в щелочных изверженных породах - нифелиновых сиенитах и других, содержание Ниобия повышено до 10 -2 - 10 -1 %. В этих породах и связанных с ними пегматитах, карбонатитах, а также в гранитных пегматитах обнаружено 23 минерала Ниобий и около 130 других минералов, содержащих повышенные количества Ниобия. Это в основном сложные и простые оксиды. В минералах Nb связан с редкоземельными элементами и с Та, Ti, Ca, Na, Th, Fe, Ba (тантало-ниобаты, титанаты и других). Из 6 промышленных минералов наиболее важны пирохлор и колумбит. Промышленные месторождения Ниобия связаны с массивами щелочных пород (например, на Кольском полуострове), их корами выветривания, а также с гранитными пегматитами. Важное значение имеют и россыпи танталониобатов.

В биосфере геохимия Ниобий изучена плохо. Установлено, что в районах щелочных пород, обогащенных Ниобием, он мигрирует в виде соединений с органическими и другими комплексами. Известны минералы Ниобия, образующиеся при выветривании щелочных пород (мурманит, герасимовскит и других). В морской воде лишь около 1·10 -9 % Ниобия по массе.

Физические свойства Ниобия. Кристаллическая решетка Ниобия объемноцентрированная кубическая с параметром а = 3,294Å. Плотность 8,57 г/см 3 (20 °С); t пл 2500 °С; t кип 4927 °С; давление пара (в мм рт. ст.; 1 мм рт. ст.= 133,3 н/м 2) 1·10 -5 (2194 °С), 1·10 -4 (2355 °С), 6·10 -4 (при t пл), 1·10 -3 (2539 °С). Теплопроводность в вт/(м·К) при 0°С и 600 °С соответственно 51,4 и 56,2, то же в кал/(см·сек·°С) 0,125 и 0,156. Удельное объемное электрическое сопротивление при 0°С 15,22·10 -8 ом·м (15,22·10 -6 ом·см). Температура перехода в сверхпроводящее состояние 9,25 К. Ниобий парамагнитен. Работа выхода электронов 4,01 эв.

Чистый Ниобий легко обрабатывается давлением на холоду и сохраняет удовлетворительные механические свойства при высоких температурах. Его предел прочности при 20 и 800 °С соответственно равен 342 и 312 Мн/м 2 , то же в кгс/мм 2 34,2 и 31,2; относительное удлинение при 20 и 800 °С соответственно 19,2 и 20,7%. Твердость чистого Ниобиы по Бринеллю 450, технического 750-1800 Mн/м 2 . Примеси некоторых элементов, особенно водорода, азота, углерода и кислорода, сильно ухудшают пластичность и повышают твердость Ниобия.

Химические свойства Ниобия. По химические свойствам Ниобий близок к танталу. Оба они чрезвычайно устойчивы (тантал более чем Ниобий) на холоду и при небольшом нагревании к действию многих агрессивных сред. Компактный Ниобий заметно окисляется на воздухе только выше 200 °С. На Ниобий действуют: хлор выше 200 °С, водород при 250 °С (интенсивно при 360 °С), азот при 400 °С. Практически не действуют на Ниобий очищенные от примеси кислорода жидкие Na, К и их сплавы, Li, Bi, Pb, Hg, Sn, применяемые в качестве жидкометаллических теплоносителей в атомных реакторах.

Ниобий устойчив к действию многих кислот и растворов солей. На него не действуют царская водка, соляная и серная кислоты при 20 °С, азотная, фосфорная, хлорная кислоты, водные растворы аммиака. Плавиковая кислота, ее смесь с азотной кислотой и щелочи растворяют Ниобий. В кислых электролитах на Ниобии образуется анодная оксидая пленка с высокими диэлектрическими характеристиками, что позволяет использовать Ниобий и его сплавы с Та взамен дефицитного чистого Та для изготовления миниатюрных электролитических конденсаторов большой емкости с малыми токами утечки.

Конфигурация внешних электронов атома Nb 4d 4 5s l . Наиболее устойчивы соединения пятивалентного Ниобия, но известны и соединения со степенями окисления + 4, +3, +2 и +1, к образованию которых Ниобий склонен более, чем тантал. Например, в системе Ниобий-кислород установлены фазы: оксид Nb 2 O 5 (t пл 1512 °С, цвет белый), нестехеометрические NbO 2,47 и NbO 2,42, оксид NbO 2 (t пл 2080 °С, цвет черный), оксид NbO (t пл 1935 °С, цвет серый) и твердый раствор кислорода в Ниобии. NbO 2 - полупроводник; NbO, сплавленная в слиток, обладает металлическим блеском и электропроводностью металлического типа, заметно испаряется при 1700 °С, интенсивно - при 2300-2350 °С, что используют для вакуумной очистки Ниобия от кислорода; Nb 2 O 5 имеет кислотный характер; ниобиевые кислоты не выделены в виде определенных химические соединений, но известны их соли - ниобаты.

С водородом Nb образует твердый раствор внедрения (до 10 ат.% Н) и гидрид состава от NbH 0,7 до NbH. Растворимость водорода в Nb (в г/см 3) при 20 °С 104, при 500°С 74,4, при 900°С 4,0. Поглощение водорода обратимо: при нагревании, особенно в вакууме, водород выделяется; это используют для очистки Nb от водорода (сообщающего металлу хрупкость) и для гидрирования компактного Nb: хрупкий гидрид измельчают и дегидрируют в вакууме, получая чистый порошок Ниобий для электролитических конденсаторов. Растворимость азота в Ниобии составляет (% по массе) 0,005, 0,04 и 0,07 соответственно при 300, 1000 и 1500 °С. Рафинируют Ниобий от азота нагреванием в глубоком вакууме выше 1900 °С или вакуумной плавкой. Высший нитрид NbN светло-серого цвета с желтоватым оттенком; температура перехода в сверхпроводящее состояние 15,6 К. С углеродом при 1800-2000°С Nb образует 3 фазы: α-фаза - твердый раствор внедрения углерода в Ниобий, содержащий до 2 ат.% С при 2335 °С; β-фаза - Nb 2 C, δ-фаза - NbC. С галогенами Ниобий дает галогениды, оксигалогениды и комплексные соли. Из них наиболее важны пентафторид NbF 5 , пентахлорид NbCl 5 , окситрихлорид NbOCl 3 , фторониобат калия K 2 NbF 7 и оксифторониобат калия K 2 NbOF 7 ·Н 2 О. Небольшое различие в давлении паров NbCl 5 и ТаСl 5 используют для их весьма полного разделения и очистки методом ректификации.

Получение Ниобия. Руды Nb - обычно комплексные и бедны Nb, хотя их запасы намного превосходят запасы руд Та. Рудные концентраты содержат Nb 2 O 5: пирохлоровые - не менее 37%, лопаритовые - 8%, колумбитовые - 30-60%. Большую их часть перерабатывают алюмино- или силикотермическим восстановлением на феррониобий (40-60% Nb) и ферротанталониобий. Металлич. Nb получают из рудных концентратов по сложной технологии в три стадии: 1) вскрытие концентрата, 2) разделение Nb и Та и получение их чистых химические соединений, 3) восстановление и рафинирование металлического Ниобия и его сплавов. Основные промышленные методы производства Nb и сплавов - алюминотермический, натриетермический, карботермический: из смеси Nb 2 O 5 и сажи вначале получают при 1800 °С в атмосфере водорода карбид, затем из смеси карбида и оксид (V) при 1800-1900 °С в вакууме - металл; для получения сплавов Ниобия в эту смесь добавляют оксиды легирующих металлов; по другому варианту Ниобий восстанавливают при высокой температуре в вакууме непосредственно из Nb 2 O 5 сажей. Натриетермическим способом Ниобий восстанавливают натрием из K 2 NbF 7 , алюминотермическим - алюминием из Nb 2 O 5 . Компактный металл (сплав) производят методами порошковой металлургии, спекая спрессованные из порошков штабики в вакууме при 2300 °С, либо электроннолучевой и вакуумной дуговой плавкой; монокристаллы Nb высокой чистоты - бестигельной электроннолучевой зонной плавкой.

Применение Ниобия. Применение и производство Ниобия быстро возрастают, что обусловлено сочетанием таких его свойств, как тугоплавкость, малое сечение захвата тепловых нейтронов (1,15 б), способность образовывать жаропрочные, сверхпроводящие и других сплавы, коррозионная стойкость, геттерные свойства, низкая работа выхода электронов, хорошие обрабатываемость давлением на холоду и свариваемость. Основные области применения Ниобия: ракетостроение, авиационная и космическая техника, радиотехника, электроника, химическое аппаратостроение, атомная энергетика. Из чистого Ниобия или его сплавов изготовляют детали летательных аппаратов; оболочки для урановых и плутониевых тепловыделяющих элементов; контейнеры и трубы для жидких металлов; детали электрических конденсаторов; "горячую" арматуру электронных (для радарных установок) и мощных генераторных ламп (аноды, катоды, сетки и другие); коррозионноустойчивую аппаратуру в химической промышленности. Ниобием легируют другие цветные металлы, в т. ч. уран. Ниобий применяют в криотронах - сверхпроводящих элементах вычислительных машин, а станнид Nb 3 Sn и сплавы Nb с Ti и Zr - для изготовления сверхпроводящих соленоидов. Nb и сплавы с Та во многих случаях заменяют Та, что дает большой экономический эффект (Nb дешевле и почти вдвое легче, чем Та). Феррониобий вводят в нержавеющие хромоникелевые стали для предотвращения их межкристаллитной коррозии и разрушения и в стали других типов для улучшения их свойств. Применяют и соединения Ниобия: Nb 2 O 5 (катализатор в химической промышленности; в производстве огнеупоров, керметов, специальных стекол), нитрид, карбид, ниобаты.

Тантал и ниобий получают восстановлением из соединений высокой чистоты: оксидов, комплексных фтористых солей, хлоридов. Промышленные способы получения металлов можно подразделить на четыре группы:

Натриетермическое восстановление из комплексных фторидов;

Восстановление из оксидов углеродом (карботермичес - кий способ);

Восстановление из оксидов алюминия (алюминотерми - ческий способ);

Восстановление из хлоридов водородом;

Электролиз расплавленных сред.

В связи с высокой температурой плавления тантал (~3000 С) и ниобия (~2500 С) их получают в результате восстановления всеми перечисленными способами, кроме тре­тьего, в форме порошков или спекшейся губки. Задача полу­чения компактных ковких тантала и ниобия осложняется тем, что эти металлы активно поглощают газы (водород, азот, кислород), примеси которых придают им хрупкость. Поэтому спекать спрессованные из порошков заготовки или плавить их необходимо в высоком вакууме.

Натриетермический способ производства порошков тантала и ниобия

Натриетермическое восстановление комплексных фторидов K2TaF7 и K2NbF7 - первый промышленный способ получения тантала и ниобия. Его применяют и в настоящее время. Для восстановления фтористых соединений тантала и ниобия при­годны натрий, кальций и магний, имеющие высокое сродство к фтору, как видно из приведенных ниже величин:

Эл<^ент Nb Та Na Mg Са

AG298, кДж/г-атом F. . . . -339 -358 -543 -527 -582

Для восстановления используют натрий, так как фторид натрия растворим в воде и может быть отделен отмывкой от порошков тантала и ниобия, тогда как фториды магния и кальция малорастворимы в воде и кислотах.

Рассмотрим процесс на примере получения тантала. Вос­становление K2TaF7 натрием протекает с большим выделением тепла (даже при масштабах загрузки шихты до 5 кг), доста­точным для самопроизвольного течения процесса. После по­догрева шихты в одном месте до 450-500 С реакция быстро распространяется по всей массе шихты, причем температура достигает 800-900 С. Поскольку натрий плавится при 97 С, а кипит при 883 , очевидно, что в восстановлении участвуют жидкий и парообразный натрий:

K2TaF7 + 5NaW = Та + 5NaF + 2KF; K2TaF7 + 5Na(ra3) = Та + 5NaF + 2KF.

Удельные тепловые эффекты реакций (2.18) и (2.19) рав­ны 1980 и 3120кДж/кг шихты соответственно.

Восстановление ведут в стальном тигле, куда послойно загружают фторотанталат калия и кусочки натрия (~120 % от стехиометрически необходимого количества), которые наре­зают специальными ножницами. Сверху шихту засыпают слоем хлорида натрия, образующего с KF и NaF легкоплавкую смесь. Солевой расплав защищает от окисления частицы по­
рошка тантала. В наиболее простом варианте проведения процесса для возбуждения реакции стенку тигля у дна наг­ревают пламенем паяльной лампы до появления красного пят­на. Реакция быстро протекает по всей массе и заканчивает­ся за 1-2 мин. При таком осуществлении процесса вслед­ствие кратковременной выдержки продуктов при максимальной температуре (800-900 С) получаются тонкодисперсные по­рошки тантала, которые после отмывки солей содержат до 2 % кислорода.

Более крупнозернистый порошок с меньшим содержанием кислорода получают при помещении реакционного тигля в шахтную электропечь с выдержкой его в печи после оконча­ния реакции при 1000 °С.

Получающийся в результате восстановления тантал вкрап­лен в виде мелких частиц во фтористо-хлоридном шлаке, со­держащем избыточный натрий. После остывания содержимое тигля выбивают, дробят на щековой дробилке и загружают небольшими порциями в реактор с водой, где происходит "гашение" натрия и растворение основной массы солей. За­тем порошок последовательно промывают разбавленной неї (для более полной отмывки солей, растворения примеси же­леза и частично титана). Для понижения содержания оксидов тантала порошок иногда дополнительно отмывают холодной разбавленной плавиковой кислотой. Затем порошок промывают дистиллированной водой, фильтруют и сушат при 110-120 С.

Описанным выше способом с соблюдением примерно тех же режимов получают порошки ниобия восстановлением k2NbF7 натрием. Высушенные порошки ниобия имеют состав, %: Ті, Si, Fe 0,02-0,06; О около 0,5; N до 0,1; С 0,1-0,15.

Карботермический способ получения ниобия и тантала из оксидов

Этот способ был первоначально разработан для производ­ства ниобия из Nb2o5.

Ниобий может быть восстановлен из Nb2os углеродом при 1800-1900 °С в вакуумной печи:

Nb2Os + 5С = 2Nb + SCO. (2.20)

Шихта Nb205 + 5С содержит мало ниобия и даже в брикетированном состоянии имеет низкую плотность (~1,8г/см3). Вместе с тем на 1 кг шихты выде­ляется большой объем со (~0,34 м3). Эти обстоятельства делают невыгодным проведение процесса по реакции (2.20), так как производительность вакуумной печи при этом низ­кая. Поэтому процесс проводят в две стадии:

І стадия - получение карбида ниобия

Nb203 + 1С = 2NbC + 5CO; (2.2l)

П стадия - получение ниобия в вакуумных печах

Nb2Os + 5NbC = 7Nb + 5CO. (2.22)

Брикетированная шихта її стадии содержит 84,2 % (по массе) ниобия, плотность брикетов ~3 г/см3, объем образу­ющегося со 0,14 м3 на 1 кг шихты (~ в 2,5 раза меньше, чем в случае шихты Nb2o5 + sc). Это обеспечивает более высокую производительность вакуумной печи.

Существенное преимущество двустадийного процесса со­стоит также в том, что первую стадию можно проводить при атмосферном давлении в графитово-трубчатых печах сопро­тивления (рис. 29).

Для получения карбида ниобия (і стадии процесса) смесь - Nb2o5 с сажей брикетируют и брикеты нагревают в графито - вотрубчатой печи в атмосфере водорода или аргона при 1800-1900 °С (вдоль печи брикеты непрерывно продвигаются

Рис. 29. Схема графитово-трубчатой печи сопротивления:

1 - кожух; 2 - графитовая труба накала; 3 - экранирующая графитовая труба; 4- сажевая теплоизолирующая засыпка; 5 - холодильник; 6 - контактные графи­товые конусы; 7 - охлаждаемая контактная головка; 8 - люк; 9 - шины, подво­дящие ток

Из расчета пребывания их в горячей зоне 1-1,5 ч). Измель­ченный карбид ниобия смешивают в шаровой мельнице с Nb2o5, взятой с небольшим избытком (3-5 %) против необхо­димого по реакции (2.22).

Шихту прессуют в заготовки под давлением 100 МПа, ко­торые нагревают в вакуумных печах с графитовыми нагрева­телями (или вакуумных индукционных печах с графитовой трубой) при 1800-1900 С. Выдержка заканчивается при дос­тижении остаточного давления 1,3-0,13 Па.

Реакции (2.21) и (2.22) являются суммарными. Они про­текают через промежуточные стадии образования низших ок­сидов (Nt>o2 и NbO), а также карбида Nb2c. Основные реак­ции I стадии:

Nb2Os + С = 2Nb02 + СО; (2.23)

Nb02 + С = NbO + СО; (2.24)

2NbO + 3С = Nb2C + 2СО; (2.25)

Nb2C + С = 2NbC. (2.26)

Реакции п стадии:

Nb2Os + 2NbC = 2Nb02 + Nb2C + CO; (2.27)

Nb02 + 2NbC = NbO + Nb2C + CO; (2.28)

NbO + Nb2C = 3Nb + CO. (2.29)

Металлический ниобий получается по завершающей ре­акции II стадии процесса (2.29). Равновесное давление со для реакции (2.29) при 1800 °С > 1,3 Па. Следовательно, проводить процесс необходимо при остаточном давлении меньшем, чем равновесное для данной реакции (0,5- 0,13 Па).

Полученные спекшиеся пористые брикеты ниобия содер­жат, %: С 0,1-0,15; О 0,15-0,30; N 0,04-0,5. Для получе­ния компактного ковкого металла брикеты плавят в элек­тронно-лучевой печи. Другой путь состоит в получении из брикетов порошка (путем гидрирования при 450 С, измель­чения и последующего дегидрирования в вакууме), прессова­нии штабиков и их спекании в вакууме при 2300-2350 С. В процессах вакуумной плавки и спекания в вакууме кислород и углерод удаляются в составе со, а избыточный кислород в составе летучих низших оксидов.

Основные преимущества карботермического способа - вы­сокий прямой выход металла (не ниже 96 %) и применение дешевого восстановителя. Недостаток способа - сложность конструкций высокотемпературных вакуумных печей.

Карботермическим способом можно получать также тантал и сплавы ниобия с танталом.

Алюминатермический способ получения ниобия и тантала из высших оксидов

Разработанный в последние годы алюминометрический спо­соб получения ниобия восстановлением пентоксида ниобия алюминием благодаря малостадийности и простоте аппаратур­ного оформления обладает технико-экономическими преиму­ществами по сравнению с другими способами производства ниобия.

Способ основан на экзотермической реакции:

3Nb2Os + 10А1 = 6Nb + 5А1203; (2.30)

Доу = -925,3 + 0,1362т, кДж/моль Nb2o5.

Высокий удельный тепловой эффект реакции (2640 кДж/кг шихты стехиометрического состава) обеспечивает возмож­ность проведения процесса без внешнего подогрева с вы­плавкой слитка ниобиевоалюминиевого сплава. Успешное про­ведение внепечного алюмотермического восстановления воз­можно в том случае, если температура процесса выше темпе­ратуры плавления А12о3 = 2030 °С) и металлической фазы (сплав Nb +10 % ai плавится при 2050 °С). При избыт­ке алюминия в шихте 30 - 40 % сверх стехиометрического количества температура процесса достигает ~2150-2200 С. Вследствие быстрого протекания восстановления превышение температуры примерно на 100-150 С по сравнению с темпе­ратурами плавления шлаковой и металлической фаз достаточ­но для обеспечения их разделения. При указанном выше из­бытке алюминия в шихте получают сплав ниобия с 8-10 % алюминия при реальном извлечении ниобия 98-98,5 %.

Алюминотермическое восстановление проводят в стальном тигле с набивной футеровкой из прокаленных оксидов магния или алюминия. Для удобства выгрузки продуктов плавки ти­гель делают разъемным. Через стенки вводят контакты для подвода электрического тока (20 В, 15 А) к запалу в виде нихромовой проволоки, помещенной в шихту. Другой возмож­ный вариант - проведение процесса в массивном разъемном медном тигле, у стенок которого образуется гарниссажный защитный слой.

Смесь тщательно высушенного Nb2o5 и алюминиевого поро­шка крупностью ~100 мкм загружают в тигель. Целесообразно для исключения контакта с воздухом помещать тигель в ка­меру, заполненную аргоном.

После включения запала реакция протекает быстро по всей массе шихты. Полученный слиток сплава дробят на кус­ки и подвергают вакуумтермической обработке при 1800-2000 С в печи с графитовым нагревателем при оста­точном давлении ~0,13 Па с целью удаления большей части алюминия (до его содержания 0,2 %). Затем проводят рафи­нировочную плавку в электронно-лучевой печи, получая слитки ниобия высокой чистоты с содержанием примесей, %: А1 < 0,002; С 0,005; Си < 0,0025; Fe < 0,0025; Mg, Mn, Ni, Sn < 0,001; N 0,005; О < 0,010; Si < 0,0025; Ті < < 0,005; V < 0,0025.

Принципиально возможно алюминотермическое получение тантала, однако процесс несколько сложней. Удельный теп­ловой эффект реакции восстановления 895 кДж/кг шихты. Вследствие высокой температуры плавления тантала и его сплавов с алюминием для выплавки слитка в шихту вводят оксид железа (из расчета получения сплава с 7-7,5 % желе­за и 1,5 % алюминия), а также подогревающую добавку - хлорат калия (бертолетову соль). Тигель с шихтой помещают в печь. При 925 С начинается самопроизвольная реакция. Извлечение тантала в сплав около 90 %.

После вакуумтермической обработки и электронно-лучевой плавки слитки тантала имеют высокую чистоту, сравнимую с приведенной выше для ниобия.

Получение тантала и ниобия восстановлением из их хлоридов водородом

Разработаны различные способы восстановления тантала и ниобия из их хлоридов: восстановление магнием, натрием и водородом. Наиболее перспективны некоторые варианты вос­становления водородом, в частности рассмотренный ниже способ восстановления паров хлоридов на нагретых подлож­ках с получением прутка компактного металла.

На рис. 30 приведена схема установки для получения тантала восстановлением паров ТаС15 водородом на тантало­вой ленте, нагретой до 1200-1400 °С. Пары ТаСІ5 в смеси с водородом поступают из испарителя в реактор, в центре ко­торого находится танталовая ленты, нагреваемая прямым пропусканием электрического тока до заданной температуры. Для равномерного распределения паро-газовой смеси по дли­не ленты и обеспечения перпендикулярного к ее поверхности потока вокруг ленты установлен экран из нержавеющей стали с отверстиями. На нагретой поверхности происходит ре­акция:

ТаС15 + 2,5 Н2 = Та + 5 HCl; AG°m к = -512 кДж. (2.31)

Рис. 30. Схема установки для восстановления пентахлорида тантала водородом: 1 - фланец реактора; 2 - изолированный электроподвод; 3 - зажимные контакты; 4 - конденсатор для непрореагировавшего хлорида; 5 - танталовая лента; 6 - экраи с отверстиями,- 7 - корпус реактора; 8 - нагреватель реактора; 9 - обо­греваемый ротаметр; 10 - игольчатый вентиль; 11 - электропечь испарителя; 12 - испаритель пентахлорида тантала; 13 - ротаметр для водорода

Оптимальные условия осаждения тантала: температура ленты 1200-1300 °С, концентрация ТаСІ5 в газовой смеси ~ 0,2моля/моль смеси. Скорость осаждения в этих усло­виях равна 2,5-3,6 г/(см2 ч) (или 1,5-2,1 мм/ч), Таким образом, за 24 ч получают пруток чистого тантала со сред­ним диаметром 24-25 мм, который может быть прокатан в лист, использован для переплавки в электронно-лучевой пе­чи или превращен в высокочистые порошки (путем гидрирова­ния, измельчения и дегидрирования порошка). Степень пре­вращения хлорида (прямое извлечение в покрытие) составля­ют 20-30 %. Непрореагировавший хлорид конденсируют и сно­ва используют. Расход электроэнергии равен 7-15 кВт ч на 1 кг тантала в зависимости от принятого режима.

Водород после отделения паров НСІ поглощением водой может быть возвращен в процесс.

Описанным способом можно получать также прутки ниобия. Оптимальные условия осаждения ниобия: температура ленты 1000-1300 С, концентрация пентахлорида 0,1-0,2 моля/моль газовой смеси. Скорость осаждения металла равна 0,7-1,5 г/(см2-ч), степень превращения хлорида в металл 15-30%, расход электроэнергии 17-22 кВт*ч/кг металла. Процесс для ниобия ослажняется тем, что часть NbCl5 вос­станавливается в объеме реактора на некотором расстоянии от накаленной ленты до нелетучего NbCl3, осаждающегося на стенках реактора.

Электролитический способ получения тантала

Тантал и ниобий нельзя выделить электролизом из водных растворов. Все разработанные процессы основаны на элект­ролизе расплавленных сред.

В промышленной практике метод применяют для получения тантала. Так, на протяжении ряда лет электролитический метод тантала использовала фирма "Фенстил" (США), часть производимого тантала в Японии в настоящее время получают электролизом. Широкие исследования и про­мышленные испытания метода проведены в СССР.

Метод электролитического получения тантала подобен ме­тоду получения алюминия.

Основой электролита служит расплав солей K2TaF7 - KF - - КС1, в котором растворен оксид тантала Та205. Применение электролита, содержащего лишь одну соль - K2TaF7, практи­чески невозможно вследствие непрерывного анодного эффекта при использовании графитового анода. Электролиз возможен в ванне, содержащей K2TaF7, КС1 и NaCl. Недостаток этого электролита - накопление в нем в процессе электролиза фтористых солей, что приводит к снижению критической плотности тока и требует корректировки состава ванны. Этот недостаток устраняется введением в электролит Та205. Результатом электролиза в этом случае является электроли­тическое разложение оксида тантала с выделением на катоде тантала, а на аноде кислорода, реагирующего с графитом анода с образованием С02 и СО. Кроме того, введение в со­левой расплав Та205 улучшает смачивание расплавом графи­тового анода и повышает величину критической плотности тока.

Выбор состава электролита базируется на данных иссле­дований тройной системы K2TaF7-KCl-KF (рис.31). В этой системе установлены две двойные соли K2TaF7 KF (или KjTaFg) и K2TaF7 КС1 (или K3TaF7Cl), две тройные эвтекти­ки Еі и Е2, плавящиеся при 580 и 710 С соответственно, и перитектическая точка Р при 678 °С. При введении Та205 в расплав он взаимодействует с фторотанталатами с образова­нием оксофторотанталата:

3K3TaF8 + Ta2Os + 6KF = 5K3TaOF6. (2.32)

Аналогично протекает реакция с K3TaF7Cl. Образование оксофторидных комплексов тантала обусловливает раствори­мость Та205 в электролите. Предельная растворимость зави­сит от содержания K3TaF8 в расплаве и соответствует сте­хиометрии реакции (2.32).

На основе данных о влиянии состава электролита на по­казатели электролиза (критическую плотность тока, выход по току, извлечение, качество танталового порошка) совет­скими исследователями предложен следующий оптимальный со­став электролита: 12,5 % (по массе) K2TaF7, остальное КС1 и KF в отношении 2:1 (по массе). Концентрация вводимого Ta2Os 2,5-3,5 % (по массе). В данном электролите при тем­пературах 700-800 °С при использовании графитового анода напряжение разложения оксофторидного комплекса 1,4 В, тогда как для KF и КС1 напряжения разложения равны ~3,4 В и ~4,6 В соответственно.

КС I K2TaF,-KCl KJaFf

Рис. 31. Диаграмма плавкости системы K2TaF7-KF-KCl

При электролизе на катоде происходит ступенчатый раз­ряд катионов Та5+:

Та5+ + 2е > Та3+ + Ъе * Та0.

Процессы на аноде можно представить реакциями: TaOF63" - Зе = TaFs + F" + 0; 20 + С = С02; С02 + С = 2СО; TaFj + 3F~ = TaF|~. Ионы TaF|~, реагируя с вводимым в расплав Ta2Os, обра­зуют вновь ионы TaOF|~. При температурах электролиза 700-750 °С в составе газов -95 % С02, 5-7 % СО; 0,2-

Среди испытанных в СССР конструкций электролизеров лучшие результаты были получены в тех, где катодом служит тигель из никеля (или сплава никеля с хромом), в центре

Рис.32. Схема электролизера для получения тантала:

1 - бункер с питателем подачи Та205; 2 - электромагнитный вибратор питателя; 3 - кронштейн с креплением для анода; 4 - полый графитовый анод с отверстия­ми в стенке; 5 - тигель-катод из нихрома; 6 - крышка; 7 - теплоизолирующий стакан; 8 - штурвал для подъема авода; 9 - пробка со стержнем для подвода тока

Которого расположен полый графитовый анод с отверстиями в стенках (рис. 32). Оксид тантала подают периодически ав­томатическим вибропитателем в полый анод. При таком спо­собе питания исключается механическое загрязнение катод­ного осадка нерастворившейся пятиокисью тантала. Газы удаляют через бортовой отсос. При температуре электролиза 700-720 С, непрерывном питании ванны Та205 (т. е. при ми­нимальном числе анодных эффектов), катодной плотности то­ка 30-50 А/дм2 и отношении DjDк = 2*4 прямое извлечение тантала составляет 87-93 %, выход по току 80 %.

Электролиз ведут до заполнения катодным осадком 2/3 полезного объема тигля. По окончании электролиза анод поднимают и электролит вместе с катодным осадком охлажда­ют. Применяют два способа обработки катодного продукта с целью отделения электролита от частиц танталового порош­ка: измельчение с воздушной сепарацией и вакуум-терми - ческую очистку.

Вакуум-термический способ, разработанный в СССР, со­стоит в отделении основной массы солей от тантала выплав­кой (вытапливанием) в атмосфере аргона с последующим уда­лением остатка испарением в вакууме при 900 С. Выплав­ленный и сконденсированный электролит возвращают на электролиз.

Та измельчением с воздушной сепарацией 30-70 мкм, а при использовании вакуум-термической обработки - 100-120 мкм.

Получение ниобия из оксифторидно-хлоридных электроли­тов, подобно танталу, не дало положительных разультатов вследствие того, что при разряде на катоде образуются низшие оксиды, загрязняющие металл. Выход по току низкий.

Для ниобия (а также для тантала) перспективны бескис­лородные электролиты. Пентахлориды ниобия и тантала рас­творяются в расплавленных хлоридах щелочных металлов с образованием комплексных солей A/eNbCl6 и MeTaCl6. При электролитическом разложении этих комплексов на катоде выделяются крупнокристаллические осадки ниобия и тантала, а на графитовом аноде - хлор.

Стоит начать с того, что ниобий неразрывно связан с таким веществом, как тантал. Это даже несмотря на то что открыты эти материалы были не в одно и то же время.

Что такое ниобий

Что же на сегодняшний день известно о таком веществе, как ниобий? Он является химическим элементом, который располагается в 5 группе таблицы Менделеева, обладая атомным номером 41, а также атомной массой 92,9. Как и многие другие металлы, для этого вещества характерен серо-стальной блеск.

Одним из наиболее важных физических параметров этого его тугоплавкость. Именно благодаря этой характеристике применение ниобия стало широко распространено во многих отраслях промышленности. Температура плавления этого вещества - 2468 градусов по Цельсию, а температура кипения - 4927 градусов по Цельсию.

Химические свойства этого вещества также находятся на высоком уровне. Он характеризуется высоким уровнем устойчивости к воздействию отрицательных температур, а также к воздействию большинства агрессивных сред.

Производство

Стоит сказать о том, что наличие руды, которая содержит элемент Nb (ниобий), гораздо больше, чем той, что содержит тантал, но проблема заключается в скудности содержания самого элемента в этой руде.

Чаще всего для того, чтобы получить этот элемент, осуществляется процесс термического восстановления, в котором участвует алюминий или же кремний. В результате проведения этой операции получаются соединения феррониобий и ферротанталониобий. Стоит отметить, что получение металлического варианта этого вещества осуществляется с этой же руды, но при этом используется более сложная технология. Тигли из ниобия и другие полученные материалы характеризуются очень высокими эксплуатационными характеристиками.

Методы получения ниобия

В настоящее время одними из наиболее развитых направлений получения этого материала являются алюминотермическое, натриетермическое и карботермическое. Отличие между этими типами заключается также и в прекурсорах, которые используются для восстановления ниобия. Допустим, в натриетермическом способе используется K2NbF7. А вот, к примеру, при алюминотермическом способе применяется пятиокись ниобия.

Если говорить о карботермическом способе получения, то эта технология подразумевает под собой смешение Nb с сажей. Проходить этот процесс должен в высокотемпературной и водородной среде. В результате проведения этой операции будет получен карбид ниобия. Второй этап заключается в том, что водородная среда заменяется вакуумной, а температура сохраняется. В этот момент к карбиду ниобия добавляется его оксид и получается сам металл.

Важно отметить, что среди форм выпускаемого металла довольно распространен ниобий в слитках. Этот продукт предназначается для производства сплава на базе металла, а также других различных полуфабрикатов.

Также может выпускаться штабик этого материала, который разделяется на несколько категорий в зависимости от чистоты вещества. Меньше всего примесей содержится в штабике с маркировкой НБШ-00. Класс НБШ-0 характеризуется более высоким наличием таких элементов, как железо, титан и кремний тантала. Категория, которая обладает наиболее высоким показателем примесей, НБШ-1. Можно добавить, что у ниобия в слитках такой классификации не имеется.

Альтернативные способы производства

К альтернативным способам можно отнести бестигельную электроннолучевую зонную плавку. Этот процесс позволяет получать монокристаллы Nb. Тигли из ниобия производятся с использованием этого метода. Он относится к порошковой металлургии. Его применяют для того, чтобы сначала получить сплав этого материала, а после и его чистый образец. Наличие этого метода стало причиной тому, что довольно часто встречаются объявления о покупке ниобия. Этот способ позволяет использовать для получения чистого металла не саму руду, добыть которую довольно сложно, или же концентрат из нее, а вторичное сырье.

К еще одному альтернативному методу производства можно отнести прокат ниобия. Стоит отметить, что большинство различных фирм отдает предпочтение покупке именно прутьев, проволоке или листовому металлу.

Прокат и фольга

Фольга из этого материала представляет собой довольно распространенный полуфабрикат. Он является наиболее тонким листом проката этого вещества. Используется для производства некоторых изделий и деталей. Фольга из ниобия получается из чистого сырья путем холодного проката Nb слитков. Полученные изделия характеризуются такими показателями, как высокая устойчивость к коррозии, воздействию агрессивной среды, а также высокой температуры. Прокат ниобия и его слитков дает также такие характеристики, как стойкость изделия к износу, высокая пластичность, хорошая поддаваемость обработке.

Продукты, полученные таким образом, чаще всего используются в таких сферах деятельности, как авиастроение, ракетостроение, медицина (хирургия), радиотехника, электротехника, атомная энергетика, ядерная энергетика. Фольга из ниобия упаковывается в катушки и хранится в сухом, защищенном от попадания влаги месте, а также в защищенном месте от механического воздействия со стороны.

Применение в электродах и сплавах

Применение ниобия очень широко распространено. Он может использоваться, как хром и никель, в качестве материала, который входит в состав железного сплава, использующегося для производства электродов. Из-за того, что ниобий, как и тантал, способен образовывать сверхтвердый карбид, его часто применяют для производства сверхтвердых сплавов. Можно добавить, что в настоящее время пробуют при помощи этого материала улучшать свойства сплавов, полученных на основе

Так как ниобий является сырьем, способным создавать карбидные элементы, то он, как и тантал, применяется в качестве легирующей смеси при производстве стали. Стоит отметить, что долгое время применение ниобия в качестве примеси к танталу считалось отрицательным действием. Однако на сегодняшний день мнение изменилось. Было установлено, что Nb может выступать в качестве заменителя танталу, причем с большим успехом, так как из-за меньшей атомной массы можно использовать меньшее количество вещества, сохраняя все старые возможности и эффекты изделия.

Применение в электрической технике

Стоит подчеркнуть, что применение ниобия, как и его брата тантала, возможно в выпрямителях, благодаря тому, что они обладают свойством униполярной проводимости, то есть эти вещества пропускают электрически ток лишь в одном направлении. Возможно использование этого металла для создания таких устройств, как аноды, что используются в мощных генераторах и усилительных лампах.

Очень важно отметить, что применение ниобия дошло и до атомной энергетики. В этой отрасли изделия из этого вещества применяются в качестве конструкционных материалов. Это стало возможным, так как наличие Nb в деталях делает их устойчивыми к жару, а также придает им высокие качества химической стойкости.

Отличные физические характеристики этого металла привели к тому, что его довольно широко используют в ракетной технике, в реактивных самолетах, в газовых турбинах.

Производство ниобия в России

Если говорить о запасах этой руды, то всего насчитывается около 16 млн тонн. Наибольшее месторождение, занимающее примерно 70% всего объема, находится в Бразилии. На территории России же располагается около 25% запасов данной руды. Данный показатель считается значительной частью от всех запасов ниобия. Наибольшее месторождение этого вещества находится в Восточной Сибири, а также на Дальнем Востоке. На сегодняшний день на территории Российской Федерации добычей и производством этого вещества занимается компания Ловозерский ГОК. Можно заметить, что производством ниобия в России занималась также фирма "Стальмаг". Она разрабатывала татарское месторождение этой руды, однако в 2010 году была закрыта.

Также можно добавить, что занимается производством оксида ниобия. Его они получают, перерабатывая лопаритовый концентрат. Это предприятие вырабатывает от 400 до 450 тонн этого вещества, большая часть из которого уходит на экспорт в такие страны, как США и Германия. Часть оставшегося оксида уходит на Чепецкий механический завод, который производит как чистый ниобий, так и его сплавы. Там располагаются значительные мощности, позволяющие производить до 100 тонн материала в год.

Металл из ниобия и его стоимость

Несмотря на то что сфера применения этого вещества довольно широка, основное предназначение - это космическая и ядерная промышленность. По этой причине Nb относится к стратегическим материалам.

Основные параметры, которые влияют на стоимость ниобия:

  • чистота сплава, большое количество примесей снижает цену;
  • форма поставки материала;
  • объемы поставляемого материала;
  • расположение пункта приема руды (разные регионы нуждаются в разном количестве элемента, а значит и цена на него отличается).

Примерный список цен на материал в Москве:

  • ниобий марки НБ-2 стоит в пределах 420-450 рублей за кг;
  • стружка ниобия стоит от 500 до 510 рублей за кг;
  • штабик марки НБШ-00 стоит от 490 до 500 рублей за кг.

Стоит отметить, что, несмотря на огромную стоимость этого товара, спрос на него только увеличивается.