Лазерная технология в производстве интегральных микросхем. Технология изготовления имс

18 ..

Технология изготовления полупроводниковых микросхем

В зависимости от разновидности полупроводниковой технологии (локализация и литография, вакуумное напыление и гальваническое осаждение, эпитаксия, диффузия, легирование и травление) получают области с различной проводимостью, которые эквивалентны емкости, либо активным сопротивлениям, либо различным полупроводниковым приборам. Изменяя концентрацию примесей, можно получить в кристалле многослойную структуру, воспроизводящую заданную электрическую схему.

В настоящее время применяют групповые способы изготовления полупроводниковых интегральных микросхем, позволяющие за один технологический цикл получить несколько сотен заготовок микросхем. Наибольшее распространение получил групповой планарный способ, заключающийся в том, что элементы микросхем (конденсаторы, резисторы, диоды и транзисторы) располагаются в одной плоскости или на одной стороне подложки.

Рассмотрим основные технологические процессы, применяемые при изготовлении полупроводниковых микросхем (термическое оксидирование, литография, эпитаксия, диффузия и ионное легирование) .

Рис. 22. Перенос изображений с помощью негативного (а) и позитивного (б) фоторезистов:
1 -основа фотошаблона, 2 - непрозрачные участки рисунка фотошаблона, 3 - фоторезистивный слой, 4 - подложка

Термическое оксидирование мало чем отличается от типовых технологических процессов, известных при производстве полупроводниковых приборов. В технологии кремниевых полупроводниковых микросхем оксидные слои служат для изоляции отдельных участков полупроводникового кристалла (элементов, микросхемы) при последующих технологических процессах.

Литография является самым универсальным способом получения изображения элементов микросхемы на кристалле полупроводника и делится на три вида: оптическая, рентгеновская и электронная.

В производстве полупроводниковых интегральных микросхем самый универсальный технологический процесс - это оптическая литография или фотолитография. Сущность процесса фотолитографии основана на использовании фотохимических явлений, происходящих в светочувствительных покрытиях (фоторезистах) при экспонировании их через маску. На рис. 22, а показан процесс негативного, а на рис. 22, б - позитивного переноса изображений с помощью фоторезистов, а на рис. 23 приведена схема технологического процесса фотолитографии.

Весь процесс фотолитографии с помощью фоторезистивной маски состоит из трех основных этапов: формирования на поверхности подложки фото-резистивного слоя 1, фоторезистивной контактной маски II и передачи изображения с фотошаблона на фоторе-зистивный слой III.

Фотолитография может производиться бесконтактным и контактным способами. Бесконтактная фотолитография по сравнению с контактной дает более высокую степень интеграции более высокие требования к фотообо-рудованию.

Процесс получения рисунка микросхемы фотолитографическим способом сопровождается рядом контрольных операций, предусмотренных соответствующими картами технологического контроля.

Рентгеновская литография позволяет получить более высокую разрешающую способность (большую степень интеграции), так как длина волны рентгеновских лучей короче, чем световых. иднако рентгенолитография требует более сложного технологического оборудования.

Электронная литография (электронно-лучевое экспонирование) выполняется в специальных вакуумных установках и позволяют получить высокое качество рисунка микросхемы. Этот вид литографии легко автоматизируется и имеет ряд преимуществ при получении больших интегральных микросхем с большим (более 105) числом элементов.

В настоящее время полупроводниковые элементы и компоненты микросхем получают тремя методами: эпитаксии, термической диффузии и ионного легирования.

Эпитаксия-процесс выращивания слоев с упорядоченной кристаллической структурой путем реализации ориентирующего действия кристалла подложки. Ориентированно выраженные слои нового вещества, закономерно продолжающие кристаллическую решетку подложки, называют эпитаксиальными слоями. Эпитаксиальные слои на кристалле выращивают в вакууме. Процессы эпитаксиального выращивания полупроводниковых слоев аналогичны получению тонких пленок. Эпитаксию можно разделить на следующие этапы: доставка атомов или молекул вещества слоя на поверхность кристалла подложки и миграция их по поверхности; начало группирования частиц вещества около поверхностных центров кристаллизации и образование зародышей слоя; рост отдельных зародышей до их слияния и образования сплошного слоя.

Эпитаксиальные процессы могут быть очень разнообразными. В зависимости от используемого материала (полупроводниковой пластины и легирующих элементов) с помощью процесса эпитаксии можно получить однородные (мало отличающиеся) по химическому составу электронно-дырочные переходы, а также однослойные и многослойные структуры наращивания слоев различных типов проводимости. Этим методом можно получить сложные сочетания: полупроводник - полупроводник; полупроводник -

Диэлектрик; полупроводник - металл.

В настоящее время наиболее широко применяют избирательный локальный эпитаксиальный рост с использованием Si02 - контактных масок с эпитаксиально-планарной технологией.

Для получения заданных параметров эпитаксиальных слоев осуществляют контроль и регулировку толщины, удельного сопротивления, распределения концентрации примеси по толщине слоя и плотности дефектов. Эти параметры слоев определяют пробивные напряжения и обратные токи р-гс-переходов, сопротивления насыщения транзисторов, внутреннее сопротивление и вольт-фа-радные характеристики структур.

Термическая диффузия - это явление направленного перемещения частиц вещества в сторону убывания их концентрации, которое определяется градиентом концентрации.

Термическую диффузию широко используют для введения легирующих примесей в полупроводниковые пластины или в выращенные на них эпитаксиальные слои с целью получения элементов микросхемы противоположного по сравнению с исходным материалом типа проводимости, либо элементов с более низким электрическим сопротивлением. В первом случае получают, например, эмиттеры, во втором- коллекторы.

Диффузию, как правило, проводят в специальных кварцевых ампулах при 1000-1350° С. Способ проведения диффузии и диф-фузант (примесь) выбирают в зависимости от свойств полупроводника и требований, предъявляемых к параметрам диффузионных структур. Процесс диффузии предъявляет высокие требования к оборудованию и частоте легирующих примесей и обеспечивает получение слоев с высокой точностью воспроизведения параметров и толщин. Свойства диффузионных слоев тщательно контролируют, обращая внимание на глубину залегания р-гс-перехода, поверхностное сопротивление или поверхностную концентрацию примеси, распределение концентрации примеси по глубине диффузионного слоя и плотность дефектов диффузионного слоя.

Дефекты диффузионных слоев (эрозию) проверяют с помощью микроскопа с большим увеличением (до 200х) или электрорадиографии.

Ионное легирование также получило широкое применение при изготовлении полупроводниковых приборов с большой плоскостью переходов, солнечных батарей и др.

Процесс ионного легирования определяется начальной кинетической энергией ионов в полупроводнике и выполняется в два этапа. Сначала в полупроводниковую пластину на вакуумной установке с дуговым разрядом внедряют ионы, а затем проводят отжиг при высокой температуре, в результате чего восстанавливается нарушенная структура полупроводника и ионы примеси занимают узлы кристаллической решетки. Метод получения полупроводниковых элементов наиболее перспективен при изготовлении различных СВЧ-структур.

Основные технологические этапы получения полупроводниковых микросхем показаны на рис. 24. Самым распространенным методом получения элементов в микросхеме (разделения участков микросхемы) является изоляция оксидной пленкой, получаемой в результате термообработки поверхности кристалла (подложки).

Чтобы получить изолирующие р-гс-переходы на подложке кремниевой пластины 1, ее обрабатывают в течение нескольких часов в окислительной среде при 1000-1200° С. Под действием окислителя эпитаксиальный полупроводниковый поверхностный слой кремния 2 окисляется. Толщина оксидной пленки 3 - несколько десятых долей микрона. Эта пленка препятствует проникновению в глубь кристалла атомов другого вещества. Но если снять пленку с поверхности кристалла в определенных местах, то с помощью диффузии или других рассмотренных выше методов можно ввести в эпитаксиальный слой кремния примеси, создав тем самым участки различной проводимости. После того как на подложке получена оксидная пленка, на подложку наносят светочувствительный слой - фоторезист 4. Далее этот слой используют для получения в нем рисунка фотошаблона 5 в соответствии с топологией микросхемы.

Перенос изображения с фотошаблона на окисленную поверхность кремниевой пластины, покрытую слоем фоторезиста, чаще всего производят фотографией, а экспонирование - ультрафиолетовым светом или рентгеном. Затем подложку с экспонированным рисунком проявляют. Те участки, которые освещались, растворяются в кислоте, обнажая поверхность оксида кремния 6. Те же участки, которые не экспонировались, кристаллизуются и становятся нерастворимыми участками 7. Полученную подложку с нанесенной на ней рельефной схемой расположения изолирующих переходов промывают и сушат. После травления незащищенных участков оксида кремния защитный слой фоторезиста удаляют химическим способом. Таким образом, на подложке получают «окна». Такой способ получения рисунка схемы называют позитивным.

Рис. 24. Основные технологические этапы получения полупроводниковых микросхем

Через обнаженные участки 6 подложки методом диффузии вводят примеси атомов бора или фосфора, которые создают изолирующий барьер 8. На полученных изолированных друг от друга участках подложки методом вторичной диффузии, травления, наращивания или другим методом получают активные и пассивные элементы схемы и токопроводящие пленки 9.

Технология получения полупроводниковых интегральных схем состоит из 15-20, а иногда и более операций. После того как
получены все компоненты схем и пленка оксида вытравлена с тех мест, где будут находиться выводы компонентов, полупроводниковую схему покрывают методом напыления или гальванического осаждения пленкой алюминия. С помощью фотолитографии с последующим травлением получают внутрисхемные соединения.

Поскольку в едином технологическом цикле на подложке изготовляют большое количество однотипных интегральных схем, пластины разрезают на отдельные кристаллы, каждый из которых содержит готовую микросхему. Кристаллы приклеивают к держателю корпуса, а электрические контакты микросхемы методом пайки, сварки и термокомпрессии соединяют с выводами проволочными перемычками. Готовые микросхемы при необходимости герметизируют одним из описанных ниже способов.

Промышленность выпускает большую номенклатуру полупроводниковых интегральных микросхем. Например, кремниевые микросхемы с диодно-транзисторными связями предназначены для работы в логических узлах ЭВМ и узлах автоматики; германиевые полупроводниковые микросхемы с непосредственными связями являются универсальными логическими переключающими элементами НЕ - ИЛИ.

Дальнейшим развитием технологии производства интегральных микросхем явилось создание схем с большой интеграцией микроэлементов.

В совмещенной интегральной микросхеме элементы выполнены в объеме и на поверхности полупроводниковой подложки комбинированием технологии изготовления полупроводниковых и пленочных микросхем. В монокристалле кремния - подложке методами диффузии, травления и другими получают все активные элементы (диоды, транзисторы и др.), а затем на эту подложку, покрытую плотной пленкой оксида кремния, напыляют пассивные элементы (резисторы, конденсаторы) и токопроводящие проводники. Совмещенную технологию применяют для изготовления микро-мощных и быстродействующих интегральных микросхем.

Для получения контактных площадок и выводов микросхемы на подложку осаждают слой алюминия. Подложка со схемой крепится на внутреннем основании корпуса, контактные площадки на монокристалле соединяются проводниками с выводами корпуса микросхемы.

Совмещенные интегральные микросхемы конструктивно могут быть выполнены в виде моноблока довольно малых размеров. Например, двухкаскадный высокочастотный усилитель, состоящий из двух транзисторов и шести пассивных элементов, размещается на монокристалле кремния размером 2,54X1,27 мм.

Быстрый рост интеграции полупроводниковых микросхем при разработке РЭА привел к созданию микросхем высокой степени сложности: БИС, СБИС и БГИС (микросборок).

Большая интегральная схема представляет собой сложную полупроводниковую микросхему с высокой степенью интеграций. В последние годы созданы полупроводниковые БИС, имеющие
на кристалле кремния размером 1,45x1,6 мм до 1000 и более элементов (транзисторов, диодов, резисторов и др.) и выполняющие функции 300 и более отдельных интегральных микросхем. Разработан микропроцессор (микро-ЭВМ), имеющий степень интеграции свыше 107 элементов на кристалле.

Используя несколько навесных структур БИС на диэлектрической подложке с пассивной пленочной частью микросхем, можно получить микросборки (БГИС), которые просты в проектировании и изготовлении.

Повышение интеграции микросхем достигается автоматизацией и введением в технологический процесс математического моделирования с машинным проектированием топологии и применением новых методов формирования элементов микросхем (ионное легирование и др.).

Основной цикл проектирования БИС состоит из двух этапов: архитектурно - схемотехнического и конструкторско - технологического.

Архитектурно-схемотехнический этап включает разработку архитектуры и структуры микросхемы, функциональных и принципиальных электрических схем, математическое моделирование и другие работы.

Конструкторско-технологический этап включает разработку топологии и конструкции микросхемы, технологии ее изготовления, а также их испытания.

Большие и сверхбольшие интегральные микросхемы на современном уровне представляют последний этап развития классических интегральных микросхем, в которых можно выделить области, эквивалентные пассивным и активным элементам. Дальнейшее развитие элементной базы электроники возможно при использовании различных эффектов и физических явлений в молекулах твердого тела (молекулярная электроника).


Введение

1. аналитический обзор

2. Технологическая часть

2.4.1 Очистка подложки

2.4.2 Термическое окисление

2.4.4 Ионная имплантация

2.4.5 Металлизация

2.4.6 Межслойная изоляция

3. инженерно - экономические расчеты

Заключение

Введение

Технология интегральных схем, развиваясь исключительно быстрыми темпами, достигла немыслимых успехов. Электроника прошла несколько этапов развития, за время которых сменилось несколько поколений элементной базы: дискретная электроника электровакуумных приборов, интегральная электроника микросхем (микроэлектроника), интегральная электроника функциональных микроэлектронных устройств (функциональная микроэлектроника). В настоящее время она играет определяющую роль в совершенствовании практически всех отраслях народного хозяйства (интегральные схемы используются в компьютерах, системах автоматизированного проектирования, промышленных роботах, средствах связи и пр.).

Применяемые при изготовлении полупроводниковых интегральных микросхем (ИМС) технологические процессы носят групповой характер, т.е. одновременно изготавливается большое количество ИМС. Многие технологические операции позволяют осуществить обработку до 200 пластин, что позволяет одновременно изготовить свыше миллиона электронных приборов.

Для реализации больших возможностей планарной технологии необходимо выполнение немалого числа общих требований производства и определенных технологических условий, обеспечивающих получение образцов полуфабрикатов высокого качества на всех технологических этапах. А это невозможно без применения особо чистых основных и вспомогательных материалов, выделяемых в специальный класс «для полупроводникового производства», точного технологического и контрольного оборудования, производственных помещений, удовлетворяющим столь высоким требованиям технологической гигиены, какие не встречаются ни в каких других отраслях.

Целью данного проекта является изучение современных технологических приемов в производстве изделий твердотельной электроники и разработка сквозного технологического процесса изготовления МДП-транзистора с диодом Шоттки.

транзистор интегральный схема

1. Аналитический обзор

Полевой транзистор с изолированным затвором - это полевой транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. Полевой транзистор с изолированным затвором состоит из пластины полупроводника (подложки) с относительно высоким удельным сопротивлением, в которой созданы две области с противоположным типом электропроводности). На эти области нанесены металлические электроды - исток и сток. Поверхность полупроводника между истоком и стоком покрыта тонким слоем диэлектрика (обычно слоем оксида кремния). На слой диэлектрика нанесен металлический электрод - затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника (рисунок 1). Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами или МОП-транзисторами (металл-оксид (окисел)-полупроводник).

Рисунок 1 - Топология и основные элементы МОП-транзистора

Технология изготовление МОП-ИМС занимает доминирующее положение среди процессов изготовления полупроводниковых ИМС. Это объясняется тем, что ИМС на МОП-транзисторах составляют значительную часть основных изделий микроэлектроники различного функционального назначения. Благодаря высокой надежности и большой функциональной сложности МОП-ИМС имеют меньшие геометрические размеры, чем ИМС на биполярных транзисторах. Технология изготовления кристаллов МОП-ИМС во многом схожа с технологией биполярных ИМС. Отличие при этом обусловлено рядом конструктивно-технологических особенностей самих МОП-ИМС.

Различают МОП-транзисторы со встроенным и индуцированным каналом :

· В МОП-транзисторах со встроенным каналом есть специальный встроенный канал, проводимость которого модулируется смещением на затворе. В случае канала p типа положительный канал отталкивает дырки из канала (режим обеднения), а отрицательный притягивает (режим обогащения). Соответственно проводимость канала либо уменьшается, либо увеличивается по сравнению с ее значением при нулевом смещении.

· МОП-транзисторах с индуцированным каналом проводящий канал возникает между сильнолегированными областями истока и стока и, следовательно, заметный ток стока появляются только при определенной полярности и при определенном значении напряжения на затворе относительно истока (отрицательного при p-канале и положительного при n-канале). Это напряжение называют пороговым.

Первыми в промышленном производстве были p-МОП-ИМС, т.к. изготовление n-МОП-ИМС затруднялось возникновением на поверхности p-Si при термическом оксидировании инверсного n-слоя, который электрически связывает элементы ИМС. Но в настоящее время в производстве преобладают n-канальные ИМС .

Транзисторы с электронной проводимостью канала имеют лучшие характеристики, так как подвижность электронов в кремнии значительно превышает подвижность дырок.

МДП-ИМС изготавливают по планарной технологии. Наиболее ответственные моменты в технологическом процессе это: создание подзатворного диэлектрика, точное совмещение затвора с каналом и получение структур с малой длиной канала.

Для полевого транзистора с изолированным затвором возможно его сочетание с диодом Шоттки. Диод Шоттки в интегральном исполнении представляет собой контакт полупроводник - металл, на котором образуется так называемый барьер Шоттки. Переходам такого типа, выполненных с учетом определенных требований, присущи такие эффекты как несимметрия вольт-амперной характеристики и наличие барьерной емкости. Для получения подобных переходов металл, наносимый в качестве электрода на поверхность электронного полупроводника, должен иметь работу выхода, меньшую работы выхода полупроводника; для электрода, наносимого на поверхность дырочного полупроводника, требуется металл с большей работой выхода (рисунок 2) .

Рисунок 2 - Зонная диаграмма образования бартера Шоттки в месте контакта металла и полупроводника p-типа

В этом случае в полупроводнике на границе с металлом образуется обогащенный основными носителями слой, обеспечивающий высокую проводимость перехода независимо от направления тока.

В целом, изготовление МДП-транзистора с диодом Шоттки не требует введения дополнительных технологических операций.

2. Технологическая часть

2.1 Описание технологического процесса

Рисунок 3 - Последовательность технологических операций производства МОП-транзистора с диодом Шоттки

В исходную пластину методом ионной имплантации внедряются бор для получения подложки p-типа (рисунок 3, а).

После этого с помощью фотолитографии и ионной имплантации фосфора формируются области с повышенным содержанием доноров (рисунок 3, в-е).

В последствии выращивается дополнительный слой диоксида кремния. Так как температура на этой стадии высокая, то примеси фосфора в течение этой операции более равномерно распределяются в толще приповерхностного слоя подложки (рисунок 3, ж).

С помощью очередной фотолитографии удаляем оксид кремния в области, разделяющей сток и исток будущего транзистора (рисунок 3, з).

Теперь самая ответственная во всем цикле производства операция - выращивание подзатворного диэлектрика (рисунок 3, и).

Теперь остается сформировать электроды стока, истока и затвора, а также переход Шоттки. Сейчас упрощенно покажем эту металлизацию (рисунок 3, к-м), а далее более подробно рассмотрим принципы ее формирования (раздел 2.4.5).

2.2 Выбор класса производственных помещений

За основу современных требований по классам чистоты чистых помещений и чистых зон берутся нормы, определенные в Федеральном стандарте США FS209E . Подготовленный проект Российского стандарта гармонизован с этим стандартом США.

Критерий чистоты - это отсутствие или минимальное число частиц загрязнений, которые находясь на поверхности пластины могут вызывать либо дефекты в выращиваемых слоях, либо становиться причиной коротких замыканий соседних близко расположенных элементов ИС.

Таблица 1- Классы чистоты по взвешенным в воздухе частицам для чистых помещений

Класс чистоты

Предельно допустимая счетная концентрация частиц N (шт/м 3) размером равным и превышающим (мкм)

Класс 1 ISO

Класс 2 ISO

Класс 3 ISO

Класс 4 ISO

Класс 5 ISO

Класс 6 ISO

Класс 7 ISO

Класс 8 ISO

Класс 9 ISO

Количественный критерий - критический размер частиц - одна треть от минимального геометрического горизонтального размера элемента ИС:

Таким образом, можно выбирать чистое помещение, соответствующее классам чистоты от ISO 1 до ISO 6. Ориентируясь также на стоимость, выбираем класс чистоты ISO 2, для которого максимально допустимая концентрация взвешенных в воздухе частиц, равных или больших чем рассматриваемый размер 0,2 мкм (число частиц в 1м 3 воздуха) составляет:

где N - номер класса чистоты ISO; D - рассматриваемый размер частиц, мкм.

2.3 Основные материалы и реактивы

В течение многих лет основным полупроводниковым материалом, который используется для изготовления интегральных схем, остается монокристаллический кремний. Пластины кремния являются той основой, в поверхностных слоях которой создаются полупроводниковые области с заданными электрофизическими характеристиками. На поверхности кремния формируются диэлектрические слои окислением самого полупроводникового материала или нанесением диэлектриков из внешних источников; образуются структуры многослойной металлизации, защитные, стабилизирующие слои и так далее. Требования к пластинам кремния детально отработаны, существует целый каталог международных стандартов ассоциации SEMI, в то же время продолжается постоянное повышение требований к кремнию, что связано с постоянным стремлением к снижению себестоимости конечного продукта - интегральных схем.

Ниже приведены некоторые геометрические характеристики пластин кремния в соответствии с техническими условиями ЕТО.035.124ТУ, ЕТО.035.206ТУ, ЕТО.035.217ТУ, ЕТО.035.240ТУ, ЕТО.035.578ТУ, ПБЦО.032.015ТУ .

Диаметр пластины 100мм.

Ориентация кремниевой подложки (100) имеет преимущество по сравнению с (111), заключающееся с более высокой подвижности электронов, обусловленной низкой плотностью поверхностных состояний на границе кремний-диэлектрик.

Толщина пластины 500 мкм.

Разброс значений толщины в партии ±10 мкм.

Разброс значений толщины по пластине ±12 мкм.

Прогиб 20 мкм.

Отклонение от плоскостности ±5 мкм.

Количество светящихся точек, менее 10

Высокие требования по примесям и механическим частицам предъявляются к деионизованной воде. В таблице 2 приведены выписки из руководящего материала международной ассоциации SEMI с указанием рекомендуемых параметров сверхчистой воды для производства полупроводниковых интегральных схем с минимальным размером элемента 0,8-1,2 мкм. Соответствующая индексация жидких реагентов по стандартам SEMI записывается как SEMI C7.

Значение параметра удельного электрического сопротивления воды должно быть близко к теоретической величине 18,2 МОм·см.

Кроме параметров, указанных в таблице, в рекомендациях SEMI приведены данные по наличию следов ряда металлов в воде. Анализ проводится на содержание следующих металлов: Li, Na, K, Mg, Ca, Sr, Ba, B, Al, Cr, Mn, Fe, Ni, Cu, Zn, Pb.

Для воды градации SEMI C7 для всех без исключения указанных элементов допустимая концентрация следов лежит в пределах от 0,001 до 0,005 ppb.

Уровень чистоты жидких химических реактивов, применяемых в производстве интегральных схем, определяется серией международных стандартов и имеет различные градации в соответствии с уровнем сложности интегральных схем.

«Grade 2» имеет обозначение стандарта, начинающееся с символов SEMI C7. Реактивы, имеющие уровень чистоты «Grade 2», используются при изготовлении интегральных схем с проектными нормами в диапазоне 0,8-1,2 мкм, что соответствует требованию задания. В реактивах градации «Grade 2» контролируются посторонние частицы размером 0,5 мкм и выше. Практически во всей номенклатуре реактивов максимальная норма - 25 частиц в 1 мл реактива. В спецификациях на такие реактивы содержание следов металлов указывается 5-10 ppb.

Помимо стандартов для химических реактивов повышенной чистоты разработаны спецификации в виде руководящих материалов.

В соответствии с ними сформированы три уровня (яруса) требований к чистоте: A, B, C (в английском написании - Tier A, Tier B, Tier C). Уровню А соответствуют требования стандарта SEMI C7. Соответственно, реактивы для данного технологического процесса должны отвечать Tier A (ярус A).

В технологии изготовления интегральных схем исключительную роль играют газы. Практически все технологические процессы проходят в газовой среде и проблема создания производства полупроводниковых приборов «без загрязнений» - это в большой степени проблема чистоты газов. Различают два типа газовых сред: газы - носители и газы химических реакций в технологических процессах. Парциальное давление газов-носителей, как правило, высокое, в связи с чем их чистота с учетом высокой концентрации в рабочей газовой среде особенно критична в технологии.

Таблица 3 - Газы в технологических процессах изготовления ИС

Наименование

Химическая формула

533 (из них 500 ppm - водород H 2)

Треххлористый бор

99,9995 (по весу в жидкой фазе)

5 (по весу в жидкой фазе)

Трифторид бора

0,94% - газы не растворимые в воде, 200 ppm - SiF 4 . Остальные примеси - 28 ppm.

Четырехфтористый углерод

30, в т. ч. 20 - N 2 , 5 - O 2

1012, из них

300 - B 4 H 10 - тетраборан

Дихлорсилан

Основные примеси - другие хлорсиланы в жидкой фазе

Гексафторэтан

Хлористый водород

Фтористый ангидрид

525, в т. ч. 200 - водяные пары по объему

Трифторид азота

1000, в т. ч. CF 4 - 500, CO - 130, N 2 -100, O 2 - 100

Закись азота

26, в т. ч. 10 - N 2

Кислород

181, в т. ч. 100 - H 2 , 50 - N 2

Моносилан

Четыреххлористый кремний

Основные примеси: SiH 2 Cl 2 - 0,2% в жидкой фазе, SiHCl 3 - 0,2% в жидкой фазе

Гексафторид серы

209, в т. ч. 100 - CF 4

Гексафторид вольфрама

39, в т. ч. 20 - HF

Трифторид хлора

2.4 Основные технологические операции

2.4.1 Очистка подложки

Понятно, что на любой подложке в каком-то количестве присутствуют загрязнения. Это могут быть частицы пыли, молекулы различных веществ, как неорганических, так и органических. Пылеобразные частицы удаляются либо механической кистевой, либо ультразвуковой отмывкой. Применяются методы с использованием центробежных струй. Процедура химической очистки обычно проводится после ликвидации неорганических молекул и атомов, и заключается в удалении органических загрязнений.

Обычная процедура очистки выполняется в смеси H 2 O-H 2 O 2 -NH 4 OH, которая обеспечивает удаление органических соединений за счет сольватирующего действия гидроксида аммония и окисляющего действия перекиси водорода. Для удаления тяжелых металлов используют раствор H 2 O-H 2 O 2 -HCl. Подобная очистка подложек проводится при температуре ~80?С в течение 10-20 минут, после чего осуществляется их отмывка и сушка.

2.4.2 Термическое окисление

Под окислением полупроводников понимают процесс их взаимодействия с окисляющими агентами: кислородом, водой, озоном и т.д.

Слой двуокиси кремния формируется обычно на кремниевой пластине за счет химического взаимодействия в приповерхностной области полупроводника атомов кремния и кислорода. Кислород содержится в окислительной среде, с которой контактирует поверхность кремниевой подложки, нагретой в печи до температуры 900 - 1200 °С. Окислительной средой может быть сухой или влажный кислород. Схематично вид установки показан на рисунке 4 (в современных установках пластины в подложкодержателе располагаются вертикально).

Рисунок 4-Схема установки процесса термического окисления

Требования к оборудованию:

1) контролируемая с точностью до 1 градуса температура подложкодержателя;

2) обеспечение плавного повышения и понижения температуры в реакторе (двухстадийный нагрев);

3) отсутствие посторонних частиц в реакторе (подложкодержатель сначала вводится в трубу реактора, а затем опускается на дно);

4) отсутствие посторонних примесей, в частности, ионов натрия на внутренней поверхности реактора (с целью их удаления проводится предварительная продувка трубы реактора хлором);

5) обеспечение введения кремниевых пластин в реактор сразу после их химической очистки.

Химическая реакция, идущая на поверхности кремниевой пластины, соответствует одному из следующих уравнений:

· окисление в атмосфере сухого кислорода (сухое окисление): Si ТВ + O 2 = SiO 2 ;

· окисление в парах воды (влажное окисление): Si ТВ +2H 2 O = SiO 2 + 2H 2 ;

· термическое окисление в присутствии хлора (хлорное окисление);

· окисление в парах воды при повышенных температуре и давлении (гидротермальное окисление).

При одной и той же температуре коэффициент диффузии воды в диоксиде кремния существенно выше коэффициента диффузии кислорода. Этим объясняются высокие скорости роста оксида во влажном кислороде. Выращивание пленок только во влажном кислороде не применяется из-за плохого качества оксида. Более качественные пленки получаются в сухом кислороде, но скорость их роста слишком мала.

Для маскирования при локальных обработках оксидирование ведут в режиме сухой-влажный-сухой кислород. Для формирования подзатворного диэлектрика МОП-структур применяют сухой кислород, т.к. пленки получаются более качественные.

2.4.3 Литографические процессы

Основное назначение литографии при изготовлении структур микросхем - получение на поверхности пластин контактных масок с окнами, соответствующими топологии формируемых технологических слоев, и дальнейшая передача топологии (рисунка) с маски на материал данного слоя. Литография представляет собой сложный технологический процесс, основанный на использовании явлений, происходящих в резистах при актиничном облучении.

Резисты, растворимость которых в проявителе увеличивается после облучения, называются позитивными. Негативные резисты после облучения становятся практически нерастворимыми в проявителе.

Стандартно в электронной промышленности применяется оптическая литография - фотолитография (рисунок 5), - для которой применяют фоторезисты, чувствительные к актиничному излучению с длиной волны от 200 до 450 нм. Фоторезисты представляют собой сложные полимерные композиции, в составе которых имеются фоточувствительные и пленкообразующие компоненты, растворители и специальные добавки.

В проекте используется позитивный высококачественный и стабильный фоторезист ФП-20Ф, предназначенный для реализации контактных и проекционных фотолитографических процессов в производстве полупроводниковых приборов и интегральных схем. В соответствии с этим для травления можно применять слабый водный раствор KOH или NaOH.

Наиболее оптимальный способ нанесения фоторезиста - центрифугирование. Подложка закрепляется на горизонтальной центрифуге. На подложку наносится 1-5 мл фоторезиста (в зависимости от размеров подложки). Центрифуга приводится во вращение до скорости 1000-3000 об/мин (в зависимости от марки фоторезиста). Вращение продолжается 1-2 мин до формирования пленки фоторезиста, растворитель при этом испаряется.

Рисунок 5 - Схема основных операций фотолитографического процесса

Существует несколько способов экспонирования, в проекте будем использовать бесконтактный (рисунок 6). Проекционная печать позволяет полностью исключить повреждения поверхности шаблона. Изображение топологического рисунка шаблона проецируется на покрытую резистом пластинку, которая расположена на расстоянии нескольких сантиметров от шаблона.

1- источник света; 2- оптическая система; 3- шаблон;

4- фоторезист; 5- кремниевая пластина.

Рисунок 6- Схема проекционной печати

Для достижения высокого разрешения отображается только небольшая часть рисунка шаблона. Это небольшая отражаемая область сканируется или перемещается по поверхности пластины. В сканирующих проекционных устройствах печати шаблон и пластина синхронно перемещаются.

При сушке фоторезиста очень важно подобрать нужные температуру и время. Сушка фоторезиста будет осуществляться наиболее распространенным способом - ИК-излучением. При этом растворитель удаляется равномерно по толщине слоя резиста и не происходит его уплотнения, а время сушки понижается до нескольких минут.

2.4.4 Ионная имплантация

Легирование полупроводниковых материалов с целью получения заданных электрофизических параметров слоев при формировании определенной геометрической структуры ИС остается важнейшей технологической задачей. Существует два вида легирования: диффузионное (включает в себя стадии загонки примеси и последующей разгонки) и ионное.

Наиболее распространенным является ионная имплантация (ионное легирование) как процесс внедрения в мишень ионизованных атомов с энергией, достаточной для проникновения в ее приповерхностные области (рисунок 7). Этот способ отличается универсальностью (можно вводить любые примеси в любое твердое тело), чистотой и точностью процесса легирования (практически исключается попадание неконтролируемых примесей) и низкими температурами процесса.

1 - источник ионов; 2 - масс-спектрометр; 3 - диафрагма; 4 - источник высокого напряжения; 5 - ускоряющая трубка; 6 - линзы; 7 - источник питания линз; 8 - система отклонения луча по вертикали и система отключения луча; 9 - система отклонения луча по горизонтали; 10 - мишень для поглощения нейтральных частиц; 11 - подложка.

Рисунок 7 - Схема установки ионного легирования

При ионной имплантации проявляется ряд нежелательных эффектов, таких как эффект каналирования, аморфизация приповерхностного слоя подложки, образование радиационных дефектов.

Эффект каналирования наблюдается при попадании иона в свободное пространство между рядами атомов. Такой ион постепенно теряет энергию за счет слабых скользящих столкновений со стенками канала и, в конце концов, покидает эту область. Расстояние, проходимое ионом в канале, может в несколько раз превышать длину пробега иона в аморфной мишени, а значит профиль распределения примеси получается неравномерным.

При внедрении ионов в кремниевую кристаллическую подложку они подвергаются электронным и ядерным столкновениям, однако, только ядерные взаимодействия приводят к смещению атомов кремния. Легкие и тяжелые ионы по-разному взаимодействуют с подложкой.

Легкие ионы при внедрении в мишень первоначально испытывают в основном электронное торможение. На профиле распределения смещенных атомов по глубине подложки существует скрытый максимум концентрации. При внедрении тяжелых ионов они сразу начинают сильно тормозиться атомами кремния.

Тяжелые ионы смещают большое количество атомов мишени из узлов кристаллической решетки вблизи поверхности подложки. На окончательном профиле распределение плотности радиационных дефектов, который повторяет распределение длин пробега выбитых атомов кремния, существует широкий скрытый пик. Например, легкие ионы 11 B испытывают в основном электронное торможение, тяжелые ионы 31 P или 75 As - тормозятся атомами кремния.

В связи с этим после проведения ионного легирования необходимо провести постимплантационный отжиг, чтобы восстановить приповерхностную область мишени.

Области стока и истока будем формировать внедрением фосфора, а для получения подложки p-типа исходную подложку будем легировать бором.

2.4.5 Металлизация

Металлизация завершает процесс формирования полупроводниковых структур. Для каждой ИМС металлизацию желательно выполнять из одного материала. Процесс металлизации заключается в реализации межкомпонентных соединений с низким сопротивлением и создании контактов с низким сопротивлением к высоколегированным областям p- и n-типа и слоям поликристаллического кремния.

Согласно заданию на курсовой проект необходимо сформировать 3 слоя металлизации. Такая металлизация полнее отвечает предъявляемым требованиям, но менее технологична, т.к. содержит не один слой металла.

В качестве первого слоя металлизации на оксиде чаще всего используют тугоплавкие металлы, особенно молибден и ванадий. Имя большую проводимость, чем другие тугоплавкие металлы, они отличаются высокой стабильностью, хорошей адгезией, легко травятся при фотолитографии. Должны обладать малой растворимостью в материале подложки и создавать хороший омический контакт с полупроводником, небольшим пороговым напряжением. Вторым слоем обычно служит алюминий, а в особо ответственных устройствах - золото. Он должен быть высокопроводящим.

Последний по порядку нанесения слой металлизации, называемый проводящим слоем, должен иметь хорошую электропроводность и обеспечивать качественное подсоединение контактных площадок к выводам корпуса. Для проводящих слоев применяются медь, алюминий, золото.

Существует множество методов получения металлических пленок. Получение качественных незагрязненных пленок методом термовакуумного напыления сложно. Пленки алюминия, полученные термовакуумным испарением, обладают большой неравномерностью размеров зерен и высоко концентрацией внутри зерен. Их последующая термообработка приводит к миграции атомов металла и скоплению их вокруг крупных частиц с образованием высоких бугорков. Получение рисунков на таких пленках фотолитографией приводит к большим неровностям краев вследствие анизотропии травления по границам зерен. Поэтому для получения линий металлизации очень малой ширины отказываются от термовакуумных процессов . Способ химического осаждения пленок из парогазовой смеси чаще применяется в лабораторных условиях. Электронно-лучевое несмотря на то, что усложняет конструкцию установки, позволяют снизить загрязнение пленок и повысить производительность процесса (рисунок 8). Оптимальная скорость роста пленки составляет 0.5 мкм/мин. С помощью данного метода наносят пленки алюминия и его сплавов, а также Si, Pd, Au, Ti, Mo, Pt, W.

Рисунок 8 - Схема процесса электронно-лучевого испарения

К преимуществам электронно-лучевого испарения относятся:

· возможность использования больших по массе источников (не требуется перезагрузка при нанесении толстых пленок);

· возможность последовательного нанесения различных пленок из соседних источников, расположенных в одной камере;

· высокая скорость роста пленок;

· возможность напыления тугоплавких материалов.

Барьер Шоттки по выполняемым функциям не относится к металлизации, но по технологии формирования его можно отнести к металлизации, т.к. она аналогична получению омических контактов к активным областям. Важнейшим этапом формирования барьеров Шоттки является выбор пары металл - полупроводник и оптимальных режимов.

Итак, для контактного слоя применим силицид платины, который будет нанесен методом электронно-лучевого испарения путем совместного испарения из двух источников. Барьер Шоттки обеспечит сплав титана и вольфрама, нанесенный на кремний тем же методом. По сути, этот сплав будет аналогичен сильнолегированной области. Для проводящего слоя применим алюминий, также нанесенный методом электронно-лучевого испарения.

2.4.6 Межслойная изоляция

Многоуровневая металлизация применяется для БИС и СБИС. Увеличение числа элементов увеличивает и площадь межэлементных соединений, поэтому их размещают в несколько уровней, разделенных изолирующими слоями и соединенными между собой в нужных местах.

Изолирующие диэлектрические пленки должны иметь высокое напряжение пробоя, низкие диэлектрическую постоянную и потери, минимальное химическое взаимодействие с прилегающими пленками, низкий уровень механических напряжений, низкую плотность связанного электрического заряда, высокую химическую стабильность и технологичность при получении пленок и создании рисунка. Недопустимым является наличие сквозных микроотверстий, которые могут привести к короткому замыканию между слоями металлизации.

Технология многоуровневой металлизации включает формирование первого уровня металлизации, получение изолирующего слоя с последующим вскрытием межуровневых контактных окон, формирование второго слоя металлизации и т.д.

Многие серийно выпускаемые ИМС изготавливаются на основе алюминиевой металлизации с изолирующими слоями SiO 2 . Пленки диоксида кремния могут осаждаться как с легирующими добавками, так и без них. Важнейший параметр при осаждении SiO 2 - воспроизводимость рельефа (рисунок 9).

Рисунок 9-Конформное воспроизведение. Толщина пленки на стенках ступеньки не отличается от толщины на дне и поверхности. Обусловлено быстрой поверхностной миграцией

В данном проекте в качестве изолирующей пленки между многоуровневой металлизацией используется нелегированный диоксид кремния, наносимый методом химического осаждения из газовой фазы (рисунок 10). Последний основан на использовании явления пиролиза или химических реакций при формировании пленок изолирующего материала.

Рисунок 10 - Установка формирования пленок методом химического осаждения из газовой фазы при нормальном давлении

В качестве химически активного газа применяют моносилан SiH 4 и кислород, а в качестве буферного газа - азот.

SiH 4 + O 2 > SiO 2 + 2H 2

Такой процесс является самым низкотемпературным для получения качественных диэлектрических слоев SiO 2 (реакцию проводят в диапазоне температур 200-400?С). Недостатком является горючесть и взрывоопасность силана. Пленки формируются очень чистыми, но из-за низких температур получаются неплотными. Во избежание этого нужно строго регулировать концентрацию силана в газовой фазе и подавать его непосредственно на поверхности пластин, предотвращая рост SiO 2 в газовой фазе .

3. нженерно-экономические расчеты

Тема проекта: Разработка технологического процесса изготовления полупроводниковых интегральных схем

Тип технологии: МОП транзистор с диодом Шоттки

Материал подложки: Si

Исходные данные по проекту:

Размер кристалла (чипа) 10х1 0 мм 2

Минимальная проектная норма элемента ИС 0,3мкм

Плотность дефектов на слой 0,1деф/см 2

Число слоев металлизации 1

Вычисление процента выхода годных структур на пластине (Y) производится по следующей формуле:

где D 0 - удельная плотность дефектов, приходящихся на одну фотолитографию, деф/см 2 ; A - активная площадь кристалла, см 2 ; F - число фотолитографических процессов в полном технологическом цикле изготовления ИС.

Расчет общего объема выпуска годных изделий проводится по исходным данным. Выход годных структур на пластине: ,

где A пл - активная площадь пластины диаметром 100 мм, A - площадь элемента, см 2 .

Годовой объем производства при запуске Z=300 пластин в сутки при условии, что процент выхода годных изделий на сборочных операциях W=95%:

Таблица. Расчет порогового напряжения МОП транзистора.

1 10 16 => 1 10 22 м -3

1,5 = 1,5 10 -6 м

40 => 4 10 -8 м

1,5 = 1,5 10 -6 м

1,5 => 1,5 10 -6 м

16 => 1,6 10 -5 м

8.85 10 -12 Ф/м 2

8,6 10 -4 Ф/м

где, - поверхностный потенциал.

где,- падение напряжения на слое оксида.

ЗАКЛЮЧЕНИЕ

В данной курсовой работе рассмотрена технология изготовления плат полупроводниковых интегральных микросхем. Полупроводниковая интегральная микросхема - это микросхема, элементы которой выполнены в приповерхностном слое полупроводниковой подложки. Эти ИС составляют основу современной микроэлектроники. Размеры кристаллов у современных полупроводниковых интегральных микросхем достигают мм 2 , чем больше площадь кристалла, тем более многоэлементную ИС можно на ней разместить. При одной и той же площади кристалла можно увеличить количество элементов, уменьшая их размеры и расстояния между ними.

При использовании другого типа подзатворного диэлектрика, других металлов при формировании контактов с кремнием, других изолирующих слоев возможно получение более сложных схем с еще меньшим размером элементов.

Список использованных источников

1. Ежовский Ю.К. Основы тонкопленочного материаловедения и технологии интегральных устройств: Учебное пособие/ СПбГТИ.- СПб., 2005.-127с.

2. Интегральные устройства радиоэлектроники УМК, СЗТУ, СПб 2009

3. Малышева И.А. Технология производства интегральных микросхем: Учебник для техникумов.- М.: Радио и связь., 1991. - 344с.

4. http :// www . karelia . ru , Гуртов В.А. Твердотельная электроника: Учебное пособие. -Петрозаводск., 2005.-405с.

5. Цветов В.П. Технология материалов и изделий твердотельной электроники: Методические указания/ СПбГТИ.- СПб.,1998.-67с.

6. http://www.analog.energomera.ru, Пластины кремния монокристаллического.

7. http :// www . karelia . ru , Курс лекций по дисциплине «Технология сбис».

Подобные документы

    Анализ технологии изготовления плат полупроводниковых интегральных микросхем – такого рода микросхем, элементы которых выполнены в приповерхностном слое полупроводниковой подложки. Характеристика монокристаллического кремния. Выращивание монокристаллов.

    курсовая работа , добавлен 03.12.2010

    Устройство и принцип действия биполярных транзисторов. Структура и технология изготовления полупроводниковых интегральных микросхем на основе биполярного транзистора с помощью метода диэлектрической изоляции; подготовка полупроводниковой подложки.

    контрольная работа , добавлен 10.06.2013

    Описание и анализ конструкции диффузионного резистора. Оптимизация его конструкции с учетом критерия минимальной площади. Последовательность операций планарно-эпитаксиальной технологии производства биполярных полупроводниковых интегральных микросхем.

    курсовая работа , добавлен 20.11.2013

    Схемотехнические параметры. Конструктивно–технологические данные. Классификация интегральных микросхем и их сравнение. Краткая характеристика полупроводниковых интегральных микросхем. Расчёт полупроводниковых резисторов, общие сведения об изготовлении.

    курсовая работа , добавлен 13.01.2009

    Принцип действия полупроводниковых диодов, свойства p-n перехода, диффузия и образование запирающего слоя. Применение диодов в качестве выпрямителей тока, свойства и применение транзисторов. Классификация и технология изготовления интегральных микросхем.

    презентация , добавлен 29.05.2010

    Этапы проектирование полупроводниковых интегральных микросхем. Составление фрагментов топологии заданного уровня. Минимизация тепловой обратной связи в кристалле. Основные достоинства использования ЭВМ при проектировании топологии микросхем и микросборок.

    презентация , добавлен 29.11.2013

    Исследование принципа действия биполярного транзистора. Конструирование и расчет параметров диффузионных резисторов. Классификация изделий микроэлектроники, микросхем по уровням интеграции. Характеристика основных свойств полупроводниковых материалов.

    дипломная работа , добавлен 20.06.2012

    Краткая историческая справка о развитии интегральных схем. Американские и советские ученные, которые внесли огромный вклад в разработку и дальнейшее развитие интегральных схем. Заказчики и потребители первых разработок микроэлектроники и ТС Р12-2.

    реферат , добавлен 26.01.2013

    Изучение современных тенденций в области проектирования интегральных микросхем и полупроводниковых приборов. Анализ алгоритма создания интегральных микросхем в среде Cadence Virtuoso. Реализация логических элементов с использованием NMOS-транзисторов.

    курсовая работа , добавлен 08.11.2013

    Маршрут изготовления биполярных интегральных микросхем. Разработка интегральной микросхемы методом вертикального анизотропного травления с изоляцией диэлектриком и воздушной прослойкой. Комплекс химической обработки "Кубок", устройство и принцип работы.

3 ТЕХНОЛОГИЧЕСКИЕ ОСНОВЫ ПРОИЗВОДСТВА

ПОЛУПРОВОДНИКОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ

Технология производства полупроводниковых интегральных микросхем (ППИМС) развилась на основе планарной технологии транзисторов. Поэтому, чтобы разбираться в технологических циклах изготовления ИМС, необходимо ознакомиться с типовыми технологическими процессами, из которых эти циклы складываются.

3.1 Подготовительные операции

Монокристаллические слитки кремния, как и других полупро­водников, получают обычно путем кристаллизации из расплава - методом Чохральского . При этом методе стержень с затравкой (в виде монокристалла кремния) после соприкосновения с расплавом мед­ленно поднимают с одновременным вращением. При этом вслед за затравкой вытягивается нара­стающий и застывающий слиток.

Кристаллографическая ориентация слит­ка (его поперечного сечения) определяется кристаллографической ориентацией затрав­ки. Чаще других используются слитки с поперечным сечением, лежащим в плоско­сти (111) или (100).

Типовой диаметр слитков составляет в настоящее время 80 мм, а максимальный может достигать 300 мм и более. Длина слитков может достигать 1-1,5 м, но обычно она в несколько раз меньше.

Слитки кремния разрезают на множе­ство тонких пластин (толщиной 0,4-1,0 мм), на которых затем изготавливают интегральные схемы. Поверхность пластин после резки весьма неровная: размеры ца­рапин, выступов и ямок намного превышают размеры будущих эле­ментов ИС. Поэтому перед началом основных технологических операций пластины многократно шлифу - ют, а затем полируют. Цель шлифовки, помимо удаления механических дефектов, состоит также в том, чтобы обеспечить необходимую толщину пластины (200-500 мкм), недостижимую при резке, и параллельность пло­скостей. По окончании шлифовки на поверхности все же остается механически нарушенный слой толщиной в несколько микрон, под которым расположен еще более тонкий, так называемый физически нарушенный слой. Последний характерен наличием «незримых» искажений кристаллической решетки и механических напряжений, возникающих в процессе шлифовки.


Полировка состоит в удалении обоих нарушенных слоев и сни­жении неровностей поверхности до уровня, свойственного опти­ческим системам - сотые доли микрометра. Помимо механиче­ской, исполь­зуется химическая полировка (травление), т. е. по существу растворение поверхностного слоя полупроводника в тех или иных реактивах. Выступы и трещины на поверхности стравливаются быстрее, чем основной материал, и в целом поверхность выравни­вается.

Важным процессом в полупроводниковой технологии является также очистка поверхности от загрязнений органическими вещест­вами, особенно жирами. Очистку и обезжиривание проводят в ор­ганических растворителях (толуол, ацетон , этиловый спирт и др.) при повышенной температуре.

Травление, очистка и многие другие процессы сопровождаются отмывкой пластин в деионизованной воде.

3. 2 Эпитаксия

Эпитаксией называют процесс наращивания монокристалли­ческих слоев на подложку, при котором кристаллогра­фическая ориентация наращиваемого слоя повторяет кристаллографическую ориентацию подложки.

В настоящее время эпитаксия обычно используется для полу­чения тонких рабочих слоев до 15 мкм однородного полупроводника на сравнительно толстой подложке, играющей роль несущей конструк­ции.

Типовой - хлоридный процесс эпитаксии применительно к кремнию состоит в следующем (рисунок 3.1). Монокристаллические кремниевые пластины загружают в тигель «лодочку» и помещают в кварцевую трубу. Через трубу пропускают поток водорода , содержащий небольшую примесь тетрахлорида кремния SiCl4. При высокой температуре (около 1200° С) на поверхности пластин проис­ходит реакция SiCl4 + 2Н2 = Si + 4HC1.

В результате реакции на подложке постепенно осаждается слой чистого

кремния, а пары HCl уносятся потоком водорода. Эпитаксиальный слой осажденного кремния монокристалличен и имеет ту же кристаллографическую ориентацию, что и подложка. Хи­мическая реакция, благодаря подбору температуры, происходит только на поверхности пластины, а не в окружающем пространстве.

Рисунок 3.1 – Процесс эпитаксии

Процесс, проходящий в потоке газа, называют газотранспорт­ной реакцией, а основной газ (в данном случае водород), перенося­щий примесь в зону реакции, - газом-носителем.

Если к парам тетрахлорида кремния добавить пары соединений фосфора (РН3) или бора (В2Н6) , то эпитаксиальный слой будет иметь уже не собственную, а соответственно электрон­ную или дырочную проводимость (рисунок 3.2а), поскольку в ходе реакции в осаждающийся кремний будут внедряться донорные атомы фосфора или акцепторные атомы бора.

Таким образом, эпитаксия позволяет выращивать на подложке монокрис - тал­лические слои любого типа проводимости и любого удельного сопротив - ления, обладающие любым типом и ве­личиной проводимости, например, на рисунке 3.2а показан слой n, а можно сформировать слой n+ или р+.

Рисунок 3.2 – Подложки с эпитаксиальной и окисной пленками

Граница между эпитаксиальным слоем и подложкой не полу­чается идеально резкой, так как примеси в процессе эпитаксии частично диффундируют из одного слоя в другой. Это обстоятель­ство затрудняет создание сверхтонких (менее 1 мкм) и многослой­ных эпитаксиальных структур. Основную роль, в настоящее время, играет однослойная эпитаксия. Она существенно пополнила ар­сенал полупроводниковой технологии; получение таких тонких однородных слоевмкм), какие обеспечивает эпитаксия, невозможно иными средствами.


На рисунке 3.2а и последующих масштаб по вертикали не соблюдается.

В установке, показанной на рисунке 3.1, предусмотрены некоторые дополнительные операции: продувка трубы азотом и неглубокое травление поверхности кремния в парах НСl (с целью очистки). Эти операции проводятся до начала основных.

Эпитаксиальная пленка может отличаться от подложки по хи­мическому составу. Способ получения таких пленок называют гетероэпитаксией, в отличие от гомоэпитаксии, описанной выше. Конечно, при гетероэпитаксии и материалы пленки и подложки долж­ны по-прежнему иметь одинаковую кристаллическую решетку. Haпример, можно выращивать кремниевую пленку на сапфировой подложке.

В заключение заметим, что помимо описанной газовой эпитаксии, существует жидкостная эпитаксия, при которой наращивание монокристаллического слоя осуществляется из жид­кой фазы, т. е. из раствора, содержащего необходимые компоненты.

3.3 Термическое окисление

Окисление кремния - один из самых характерных процессов в технологии современных ППИМС. Получаемая при этом пленка дву­окиси кремния SiO2 (рисунок 3.2б) выполняет несколько важных функций, в том числе:

Функцию защиты - пассивации поверхности и, в частности, защиты вертикальных участков p- n переходов, выходящих на поверхность;

Функцию маски, через окна в которой вводятся необходимые примеси методом диффузии (рисунок 3.4б);

Функцию тонкого диэлектрика под затвором МОП-транзи­стора или конденсатора (рисунки 4.15 и 4.18в);

Диэлектрическое основание для соединения металлической пленкой элементов ПП ИМС (рисунок 4.1).

Поверхность кремния всегда покрыта «собственной» окисной пленкой, получающейся в результате «естественного» окисления при самых низких температурах. Однако эта пленка имеет слишком ма­лую толщину (около 5 нм), чтобы выполнять какую-либо из пере­численных функций. Поэтому при производстве полупроводниковых ИМС более толстые пленки SiO2 получа­ют искусственным путем.

Искусственное окисление кремния осуществляется обычно при высокой температуре (° С). Такое термическое окисление можно проводить в атмосфере кислорода (сухое окис­ление), в смеси кислорода с парами воды (влажное окисление ) или просто в парах воды.

Во всех случаях процесс проводится в окислительных печах. Основу таких печей составляет, как и при эпитаксии, кварцевая труба, в которой размещается «лодочка» с пластинами кремния, нагреваемая либо токами высокой частоты, либо иным путем. Че­рез трубу пропускается поток кислорода (сухого или увлажненного) или пары воды, которые реагируют с кремнием в высокотем­пературной зоне. Получаемая таким образом пленка SiO2 имеет аморфную структуру (рисунок 3.2б).

Очевидно, что скорость роста окисла со временем должна убы­вать, так как новым атомам кислорода приходится диффундировать через все более толстый слой окисла. Полуэмпирическая формула, связывающая толщину окисной пленки со временем термического окисления, имеет вид:

где k - параметр, зависящий от температуры и влажности кисло­рода.

Сухое окисление идет в десятки раз медленнее влажного. На­пример, для выращивания пленки SiO2 толщиной 0,5 мкм в сухом кислороде при 1000° С требуется около 5 ч, а во влажном - всего 20 мин. Однако, качество пленок, полученных во влажном кислороде, ниже. С уменьшением температуры на каждые 100° С время окис­ления возрастает в 2-3 раза.


В технологии ИМС различают «толстые» и «тонкие» окислы SiO2. Толстые окислы (d = 0,7-1,0 мкм) выполняют функции защиты и маскировки, а тонкие (d= 0,1-0,2 мкм) - функции подзатворного диэлектрика в МОП-транзисторах и конденсаторах.

Одной из важных проблем при выращивании пленки SiO2 яв­ляется обеспечение её однородности. В зависимости от качества поверхности пластины, от чистоты реагентов и режима выращи­вания в пленке возникают те или иные дефекты. Распространенным типом дефектов являются микро - и макропоры, вплоть до сквозных отверстий (особенно в тонком окисле).

Качество окисной пленки повышается с уменьшением темпе­ратуры ее выращивания, а также при использовании сухого кис­лорода. Поэтому тонкий подзатворный окисел, от качества которого зависит стабильность параметров МОП-транзистора, получают су­хим окислением. При выращивании толстого окисла чередуют су­хое и влажное окисление: первое обеспечивает отсутствие дефектов, а второе позволяет сократить время процесса.

Другие методы получения пленки SiO2 рассмотрены в .

3.4 Литография

В технологии полупроводниковых приборов важное место за­нимают маски: они обеспечивают локальный характер напыления, легирования, травления, а в некоторых случаях и эпитаксии. Всякая маска содержит совокупность заранее спроектированных от­верстий – окон. Изготовление таких окон есть задача литографии (гравировки). Ведущее место в технологии изготовления масок сох­раняют фотолитография и электронолитография .

3.4.1. Фотолитография. В основе фотолитографии лежит ис­пользование материалов, которые называют фоторезистами . Это разновидность фотоэмульсий, известных в обычной фотографии. Фоторезисты чувствительны к ультрафиолетовому свету, поэтому их можно обрабатывать в не очень затемненном помещении.

Фоторезисты бывают негативные и позитивные. Негативные фоторезисты под действием света полимеризуются и становятся устойчивыми к травителям (кислотным или щелочным). Значит, после локальной засветки будут вытравливаться не засвеченные участки (как в обычном фото негативе). В позитивных фоторезистах свет, наоборот, разрушает полимерные цепочки и, значит, будут вытравливаться засве­ченные участки.

Рисунок будущей маски изготав­ливается в виде так называемого фо ­тошаблона . Фотошаблон представляет собой толстую стеклян­ную пластину, на одной из сторон которой нанесена тонкая непрозрач­ная пленка с необходимым рисунком в виде прозрачных отверстий. Разме­ры этих отверстий (элементов рисунка) в масштабе 1: 1 соответствуют раз­мерам будущих элементов ИС, т. е. могут составлять 20-50 мкм и менее (до 2-3 мкм). Поскольку ИС изготавливаются групповым мето­дом, на фотошаблоне по «строкам» и «столбцам» размещается множество однотипных рисунков. Размер каждого рисунка соответствует размеру будуще­го кристалла ИС.

Процесс фотолитографии для получения окон в окисной маске SiO2, покрывающей поверхность кремниевой пластины, состоит в следующем (рисунок 3.3). На окисленную поверхность пластины наносится, например, негативный фото­резист (ФР). На пластину, покрытую фоторезистом, накладывают фотошаблон ФШ (рисунком к фоторезисту) и экспонируют его в ультрафиолетовых (УФ) лучах кварцевой лампы (рисунок 3.3а). После этого фотошаблон снимают, а фоторезист проявляют и закрепляют.

Если используется позитивный фоторезист, то после проявления и закрепления (которое состоит в задубливании и термо­обработке фоторезиста) в нем получаются окна на тех местах, ко­торые соответствуют прозрачным участкам на фотошаблоне.

Как говорят, рисунок перенесли с фотошаблона на фоторезист. Те­перь слой фоторезиста представляет собой маску, плотно при­легающую к окисному слою (рисунок 3.3б).

Через фоторезистивную мас­ку производится травление окисного слоя вплоть до крем­ния (на кремний данный травитель не действует). В качестве травителя используется плавиковая кислота и её соли. В результате рисунок с фоторе­зиста переносится на окисел. После удаления (стравлива­ния) фоторезистивной маски ко­нечным итогом фотолитогра­фии оказывается кремниевая пластина покрытая окисной маской с окнами (рисунок 3.3в). Через окна можно осуществлять диффузию, ионную имплантацию, травление и т. п.

Рисунок 3.3 – Процесс фотолитографии

В технологических циклах изготовления элементов ИМС процесс фотолитографии используется многократно (отдельно для получения базовых слоев, эмиттеров, омических контактов и т. д.). При этом возникает так называемая проблема совмещения фотошаблонов. При многократном использовании фотолитографии (в техноло­гии ППИМС до 5-7 раз) допуск на совмещение доходит до долей микрона. Техника совмещения состоит в том, что на фотошаблонах делают специальные «отметки» (например, крестики или квадраты), ко­торые переходят в рисунок на окисле и просвечивают сквозь тон­кую пленку фоторезиста. Накладывая очередной фотошаблон, аккуратнейшим образом (под микроскопом) совмещают отметки на окисле с аналогичными отметками на фотошаблоне.

Рассмотренный процесс фотолитографии характерен для полу­чения окисных масок на кремниевых пластинах с целью по­следующей локальной диффузии. В этом случае фоторезистивная ма­ска является промежуточной, вспомо­гательной, так как она не выдерживает высокой температуры, при которой проводится диффузия. Однако в некоторых случаях, когда процесс идет при низкой температуре, фоторезистивные ма­ски могут быть основными - рабочими. Примером может служить процесс создания металлической разводки в полупровод­никовых ИМС.

При использовании фотошаблона его эмульсионный слой изна­шивается (стирается) уже после 15-20 наложений. Срок службы фотошаблонов можно увеличить на два порядка и более путем металлизации: заменяя пленку фото­эмульсии на пленку износостойкого металла, обычно хрома.

Фотошаблоны изготавливаются комплектами по числу операций фотолитографии в технологическом цикле. В пределах комплекта фотошаблоны согласованы, т. е. обеспечивают совме­щение рисунков при совмещении соответствующих отметок.

3.4.2 Электронолитография. Описанные методы долгое время составляли одну из основ микроэлектронной технологии. Они и до сих пор не потеряли своего значения. Однако по мере по­вышения степени интеграции и уменьшения размеров элементов ИС возник ряд проблем, которые частично уже решены, а частично находятся в стадии изучения.

Одно из принципиальных ограничений касается разрешающей способ - ности , т. е. минимальных размеров в создаваемом рисунке маски. Дело в том, что длины волн ультрафиолетового света со­ставляют 0,3-0,4 мкм. Следова - тельно, каким бы малым не было отверстие в рисунке фотошаблона, размеры изображения этого отверстия в фоторезисте не могут достигать указанных значений (из-за дифракции). Поэтому, минимальная ширина элементов составляет около 2 мкм, а при глубоком ультрафиолете (длина волны 0,2-0,3 мкм) – около 1 мкм. Между тем размеры порядка 1-2 мкм уже оказываются недостаточно малыми при соз­дании больших и сверхбольших ИМС.

Наиболее очевидный путь для повышения разрешающей спо­собности лито - графии - использование при экспозиции более ко­ротковолновых излучений.

За последние годы разработаны методы электронной литогра­фии. Их сущность состоит в том, что сфокусированный пучок элек­тронов сканируют (т. е. перемещают «построчно») по поверхности пластины, покрытой электронорезистом, и управляют интенсивностью пучка в соответствии с заданной программой. В тех точках, которые должны быть «засвечены», ток пучка максимален, а в тех, которые должны быть «затемнены», - равен нулю. Диаметр пучка электронов находится в прямой зависимости от тока в пучке: чем меньше диаметр, тем меньше ток. Однако с уменьшением тока растет время экспозиции. Поэтому повышение разрешающей способности (уменьшение диаметра пучка) сопровождается увеличением дли­тельности процесса. Например, при диаметре пучка 0,2-0,5 мкм время сканирования пластины, в зависимости от типа электронорезиста и раз­меров пластины, может лежать в пределах от десятков минут до не­скольких часов.

Одна из разновидностей электронной литографии основана на отказе от электронорезистивных масок и предусматривает воздействие электрон­ного пучка непосредственно на окисный слой SiO2. Оказывается, что в местах «засветки» этот слой в дальнейшем травится в несколь­ко раз быстрее, чем в «затемненных» участках.

Минимальные размеры при электронолитографии составляют 0,2 мкм, хотя предельно достижимы – 0,1 мкм.

В стадии исследования находятся другие методы литографии, например, мягкое рентге­новское излучение (с длинами волн 1-2 нм) позволяет получить минимальные размеры 0,1 мкм, а ионно-лучевая литография 0,03 мкм.

3.5 Легирование

Внедрение примесей в исходную пластину (или в эпитаксиальный слой) путем диффузии при высокой температуре является ис­ходным и до сих пор основным способом легирования полупровод­ников с целью создания транзисторных структур и на их основе других элементов. Однако за последнее время широкое распространение получил и другой способ легирования - ионная имплантация.

3.5.1 Способы диффузии. Диффузия может быть общей и локальной. В первом случае она осуществляется по всей поверхности пластины (рисунок 3.4а), а во втором - на определенных участках пла­стины через окна в маске, например, в толстом слое SiO2 (рисунок 3.4б).

Общая диффузия приводит к образованию в пластине тон­кого диффузионного слоя, который отличается от эпитаксиального неоднородным (по глубине) распределением примеси (см. кривые N(x) на рисунках 3.6а и б).

Рисунок 3.4 – Общая и локальная диффузии

В случае локальной диффузии (рисунок 3.4б) примесь распространяется не только в глубь пластины, но и во всех перпендикулярных на­правлениях, т. е. под маску. В результате этой так называемой боковой диффузии участок р-n перехода, выходящий на по­верхность, оказывается «автоматически» защищенным окислом. Соотношение между глубинами боковой и основной -

«вертикальной» диффузии зависит от ряда факторов, в том числе от глубины диффузионного слоя. Типичным для глубины боковой диффузии можно считать значение 0,8×L.

Диффузию можно проводить однократно и многократно. На­пример, в исходную пластину n-типа можно во время 1-й диффузии внедрить акцеп - торную примесь и получить р-слой, а затем во время 2-й диффузии внедрить в полученный р-слой (на меньшую глубину) донорную примесь и тем самым обеспечить трехслойную структуру. Соответственно различают двойную и тройную диффузию (см раздел 4.2).

При проведении многократной диффузии следует иметь в виду, что концентрация каждой новой вводимой примеси должна превышать концен - трацию предыдущей, в противном случае тип проводи­мости не изменится, а значит, не образуется р-n переход. Между тем концентрация примеси в кремнии (или другом исходном мате­риале) не может быть сколь-угодно большой: она ограничена особым параметром - предельной растворимостью примеси NS . Предельная растворимость зависит от температуры. При некоторой темпера­туре она достигает максимального значения, а затем снова уменьшается. Максимальные предельные растворимости вместе с со­ответствующими температурами приведены в таблице 3.1.

Таблица 3.1

Следовательно, если проводится многократная диффузия, то для последней диффузии нужно выбирать материал с максимальной предельной растворимостью. Поскольку ассортимент примесных материалов ограничен,

не удается обеспечить более 3-х последо­вательных диффузий.

Примеси, вводимые путем диффузии, называют диффузантами (бор, фосфор и др.). Источниками диффузантов являются их химические соединения. Это могут быть жидкости (ВВr3, РОСl), твердые тела (В2О3, P2O5) или газы (В2Н6, РН3).

Внедрение примесей обычно осуществляется с помощью газотран - спортных реакций - так же, как при эпитаксии и окислении. Для этого используются либо однозонные, либо двухзонные диф­фузионные печи .

Двухзонные печи используются в случае твердых диффузантов. В таких печах (рисунок 3.5) имеются две высокотемпературные зоны, одна - для испарения источника диффузанта, вторая - собственно для диффузии.

Рисунок 3.5 - Процесс диффузии

Пары источника диффузанта, полученные в 1-й зоне, примешиваются к по - току нейтрального газа-носителя (напри­мер, аргона) и вместе с ним доходят до 2-й зоны, где расположены пластины кремния. Температура во 2-й зоне выше, чем в 1-й. Здесь атомы диффузанта внедряются в пластины, а другие составляющие химического соединения уносятся газом-носителем из зоны.

В случае жидких и газообразных источников диффузанта нет необходи - мости в их высокотемпературном испарении. Поэтому ис­пользуются однозон - ные печи, как при эпитаксии, в которые источник диффузанта поступает уже в газообразном состоянии.

При использовании жидких источников диффузанта диффузию проводят в окислительной среде, добавляя к газу-носителю кисло­род. Кислород окисляет поверхность кремния, образуя окисел SiO2, т. е. в сущности - стекло. В присут - ствии диффузанта (бора или фосфора) образуется боросиликатное или фосфорносиликатное стекло. При температуре выше 1000оС эти стекла находятся в жид­ком состоянии, покрывая поверхность кремния тонкой пленкой, так что диффузия примеси идет, строго говоря, из жидкой фазы. После застывания стекло защищает поверхность кремния в местах диффузии,

т. е. в окнах окисной маски. При использовании твердых источников диффузанта - окислов - образование стекол происходит в процессе диффузии без специально вводимого кислорода.

Различают два случая распределения примеси в диффузионном слое.

1 Случай неограниченного источника примеси. В этом случае диф-фузант непрерывно поступает к пластине, так что в её приповерхностном слое концентрация примеси поддерживается постоянной равной NS. С увеличением времени диффузии увеличивается глубина диффузионного слоя (рисунок 3.6а).

2 Случай ограниченного источника примеси. В этом случае сначала в тонкий приповерхностный слой пластины вводят некоторое количество атомов диффузанта (время t1), а затем источник диффузанта отключают и атомы примеси перераспределяются по глубине пластины при неизменном их общем количестве (рисунок 3.6б). При этом концентрация примеси на поверхности снижается, а глубина диффузионного слоя увеличивается (кривые t2 и t3). Первую стадию процесса называют ²загонкой², вторую - ²разгонкой² примеси.

Рисунок 3.6 – Распределение диффузанта

3.5.2 Ионная имплантация.

Ионной имплантацией называют метод легирования пластины (или эпитаксиального слоя) путем бомбардировки ионами примеси, ускоренными до энергии, доста­точной для их внедрения в глубь твердого тела.

Ионизация атомов примеси, ускорение ионов и фокусировка ионного пучка осуществляются в специальных установках типа ускорителей частиц в ядерной физике. В качестве примесей ис­пользуются те же материалы, что и при диффузии.

Глубина внедрения ионов зависит от их энергии и массы. Чем больше энергия, тем больше получается толщина имплантирован­ного слоя. Однако с ростом энергии возрастает и количество ра­диационных дефектов в кристалле, т. е. ухудшаются его электрофи­зические параметры. Поэтому энергию ионов ограничивают вели­чиной 100-150 кэВ. Нижний уровень составляет 5-10 кэВ. При таком диапазоне энергии глубина слоев лежит в пределах 0,1 - 0,4 мкм, т. е. она значительно меньше типичной глубины диффузионных слоев.

Концентрация примеси в имплантированном слое зависит от плотности тока в ионном пучке и времени процесса или, как говорят, от времени экспо -зиции. В зависимости от плотности тока и жела­емой концентрации время экспозиции составляет от нескольких секунд до 3-5 мин и более (иногда до

1-2 ч). Разу­меется, чем больше время экспози­ции, тем опять же больше количест­во радиационных дефектов.

Типичное распределение примеси при ионной имплантации показано на рисунке 3.6в сплошной кривой. Как видим, это распределение существенно отличается от диффузионного наличием максимума на определенной глубине.

Поскольку площадь ионного пуч­ка (1-2 мм2) меньше площади пла­стины (а иногда и кристалла), при­ходится сканировать пучок, т. е. плавно или «шага - ми» перемещать его (с помощью специальных отклоняющих систем) пооче - редно по всем «строкам» пластины, на которых расположены отдельные ИМС.

По завершении процесса легирования пластину обязательно под­вергают отжигу при температуре ° С для того, чтобы упо­рядочить кристал - лическую решетку кремния и устранить (хотя бы частично) неизбежные радиа-ционные дефекты. При температуре отжига процессы диффузии несколько меняют профиль распре­деления (см. штриховую кривую на рисунке 3.6в).

Ионная имплантация проводится через ма­ски, в которых длина пробега ионов должна быть значительно мень­ше, чем в кремнии. Материалом для масок могут служить распро­страненные в ИМС двуокись кремния или алюминий . При этом важным достоинством ионной имплантации является то, что ионы, двигаясь по прямой линии, внедряются только в глубь пластины, а анало­гия боковой диффузии (под маску) практиче­ски отсутствует.

В принципе ионную имплантацию, как и диффузию, можно проводить многократно, «встраивая» один слой в другой. Однако сочетание энергий, времен экспозиции и режимов отжига необхо­димое для многократной имплантации, оказывается затруднитель­ным. Поэтому ионная имплантация получила главное распростра­нение при создании тонких одинарных слоев.

3.6 Нанесение тонких пленок

Тонкие пленки не только являются основой тонкопленочных гибридных ИМС, но широко используются и в полупроводниковых интеграль­ных схемах. Поэтому методы получения тонких пленок относятся к общим вопросам технологии микроэлектроники.

Существует три основных метода нанесения тонких пленок на подложку и друг на друга: термическое (вакуумное) и ионо-плазменное напыление, которое имеет две разновидности: катодное напыление и собственно ионно-плазменное.

3.6.1 Термическое (вакуумное) напыление.

Принцип этого метода напыления показан на рисунке 3.7а. Металлический или стеклянный колпак 1 расположен на опорной плите 2. Между ними находится проклад­ка 3, обеспечивающая поддержание ва­куума после откачки воздуха из подколпачного пространства. Подложка 4, на которую проводится напыление, закреплена на держателе 5. К держателю примыкает нагреванапыление проводится на нагретую подложку). Испари­тель 7 включает в себя нагреватель и источник напыляемого вещества. Пово­ротная заслонка 8 перекрывает поток паров от испарителя к подложке: напы­ление длится в течение времени, когда заслонка открыта.

Нагреватель обычно представляет собой нить или спираль из тугоплавко­го металла (вольфрам, молибден и др.), через которую пропускается достаточно большой ток. Источник напыляемого вещества связывается с нагревателем по-разному: в виде скобок («гусариков»), навешиваемых на нить накала; в виде небольших стержней, охватываемых спиралью, в виде порошка, засыпанного в

Рисунок 3.7 – Нанесение пленок

тигель, нагреваемый спиралью, и т. п. Вместо нитей накала в по­следнее время используют нагрев с помощью электронного луча или луча лазера.

На подложке создаются наиболее благоприятные условия для конденсации паров, хотя частично конденсация происходит и на стенках колпака. Слишком низкая температура подложки пре­пятствует равномерному распределению адсорбируемых атомов: они группируются в «островки» разной толщины, часто не связанные друг с другом. Наоборот, слишком высокая температура под­ложки приводит к отрыву только что осевших атомов, к их «реиспарению». Поэтому для получения качественной пленки температура подложки должна лежать в некоторых оптимальных пределах (обычно 200-400° С). Скорость роста пленок в зависимости от ряда факторов (температура подложки, рас­стояние от испарителя до подложки, тип напыляемого материала и др.) лежит в пределах от десятых долей до десятков нанометров в секунду.

Прочность связи - сцепления пленки с подложкой или другой пленкой - называется адгезией . Некоторые распространенные ма­териалы (например, золото) имеют плохую адгезию с типичными под­ложками, в том числе с кремнием. В таких случаях на подложку сна­чала наносят так называемый подслой , характерный хорошей адге­зией, а затем на него напыляют основной материал, у которого адгезия с подслоем тоже хорошая. Например, для золота подслоем могут быть никель или титан.

Для того чтобы атомы напыляемого материала, летящие от испарителя к подложке, испытывали минимальное количество столкновений с атомами оста­точного газа и тем самым минимальное рассеяние, в подколпачном пространстве нужно обеспечивать достаточно высокий вакуум. Критерием необходимого вакуума может служить условие, чтобы средняя длина свободного пробега атомов в несколько раз превышала расстояние между испарителем и подложкой. Однако этого условия часто недостаточно, так как любое количество остаточного газа чревато загрязнением напыляемой пленки и изменением ее свойств. Поэтому в принципе вакуум в установках термического напыления должен быть как можно более высоким. В настоящее время вакуум ниже 10-6 мм рт. ст. считается неприемлемым, а в ряде первоклассных напылительных установок он доведен до 10-11 мм рт. ст.

Подготовка пластин кремния.

· Получение металлургического и электронного кремния

· Получение кремния методом зонной плавки

· Выращивание кремния по методу Чохральского

· Механическая обработка слитка.

o отделение затравочной и хвостовой части слитка;

o обдирка боковой поверхности до нужной толщины;

o шлифовка одного или нескольких базовых срезов (для облегчения дальнейшей ориентации в технологических установках и для определения кристаллографической ориентации);

o резка алмазными пилами слитка на пластины

o шлифовка. На абразивном материале SiC или Al 2 O 3 удаляются повреждения высотой более 10 мкм

o полирование. Используют смесь полирующей суспензии (коллоидный раствор частиц SiO 2 размером 10 нм) с водой.

· Травление.

o В смеси плавиковой, азотной и уксусной кислот, приготовленной в пропорции 1:4:3, или раствора щелочей натрия производится травление поверхности Si .

o Промывка в деионизованной и бидистиллированной воде

В окончательном виде кремний представляет собой пластину диаметром 15 - 40 см, толщиной 0.5 - 0.65 мм с одной зеркальной поверхностью.

Получение металлургического и электронного кремния

Исходным сырьем для большинства изделий микроэлектронной промышленности служит элек­тронный кремний. Первым этапом его получения является изготовление сырья, называемого метал­лургическим кремнием .

Этот технологический этап реализуется с помощью дуговой печи с погруженным в нее элек­тродом. Печь загружается кварцитом SiO 2 и углеродом в виде угля, щепок и кокса. Температура ре­акции Т=1800°С, энергоемкость W = 13 кВт/час печи происходит ряд промежуточных реакций.

Результирующая реакция может быть представлена в виде:

SiC тв + SiO 2 тв Si тв + SiO 2 газ + CO газ

Металлургический кремний со степенью чистоты 98% измельчают и помещают в гидрометаллургическую установку для получения трихлорсилана . Температура реакции Т=300°C.

Si тв +3HCl газ SiHCl 3 газ + H 2 газ + Q

Производство электронного кремния проходит в несколько этапов:

1. Сначала в дуговой печи с погружаемым электродом получают металлургический кремний

SiC тв + SiO 2 Si тв + SiO газ + CO газ

кварцит(SiO 2)+углерод в виде угля, щепок и кокса. температура реакции 1800 °С энергоемкость 13 кВт/ч

Металлургический кремний измельчают в порошок. Вступая в реакцию с безводным хлористым водородом, кремний пе­реходит в трихлорсилан SiHCl 3 Si тв + 3HCl газ SiHCl 3 газ + H 2 газ + теплота

температура реакции 300 °C проходит в присутствии катализаторов

2. Электронный кремний получают из очищенного трихлорсилана путем осаждения из парогазо­вой смеси. Трихлорсилан при температуре Т = 32 °С становится жидкостью. Химическая ре­акция представляет собой реакцию водородного восстановления кремния из трихлорсилана :

2SiHCl 3 газ + 3H 2 газ 2Si тв + 6HCl газ

3. Зародышем будущего слитка служит резистивно нагреваемый кремниевый стержень. Полный цикл осаждения длится много часов. В результате получается стержень поликристаллического по структуре электронного кремния диаметром до 20 см и длиной несколько метров.

Этот процесс используют также для производства поликристаллических кремниевых труб, при­меняемых в качестве держателей и подставок, необходимых при осуществлении высокотемпера­турных обработок.

Технология получения кремния методом зонной плавки

В технологии формирования полупроводниковых соединений применение метода зонной плавки позволяет совместить в од­ном технологическом цикле сразу три операции: синтез, глубокую очистку синтезированного соединения и выращивание из него монокристалла .

Зонная плавка является одним из наиболее эффективных методов глубокой очистки полупроводников. Идея метода связана с различной растворимостью примесей в твердой и жидкой фазах полупроводника. Монокристалл получают из расплава, од­нако, перед началом кристаллизации расплавляется не вся твердая фаза кристалла, а только узкая зона, которая при перемеще­нии вдоль кристалла втягивает в себя примеси.

Различают вертикальную (ВЗП) и горизонтальную (ГЗП) зонные плавки.

В методе ВЗП стержень из поликристаллического кремния удерживается в вертикальном положении и вращается, в то время как расплавленная зона (высотой от 1 до 2 см) медленно проходит от нижней части стержня до его верха, как показано на рисунке.

1 – Держатель 2 - Обмотка нагревателя 3 - Монокристаллический кремний 4 - Затравочный монокристалл 5 – Держатель 6 - Расплавленная зона 7 - Стержень из поликристаллического кремния

Расплавленная область нагревается с помощью высокочастотного индукционного нагре­вателя и перемещается вдоль стержня от затравочного монокристалла. Поскольку боль­шинство примесей обладает хорошей растворимостью в жидкой фазе по сравнению с твер­дой, то по мере продвижения зона плавления все больше насыщается примесями, которые скапливаются на конце слитка. Процесс зонной плавки повторяют несколько раз, а по окон­чании очистки загрязненный конец слитка отрезают.

Для ускорения процесса очистки вдоль контейнера ставят несколько индукторов для образования ряда зон плавления. Теоретически многократная зонная плавка позволяет очень глубоко очистить исходный материал. Однако на практике такого результата достичь невозможно, так как одновременно с очисткой и увеличением числа проходов расплав загрязняется примесями контейнера и окружающей среды.

Выращивание кремния по методу Чохральского

Установка состоит из следующих блоков (см . рис.):

· печь, включающая в себя тигель (8), контейнер для поддержки тигля (14), нагреватель (15), источник питания (12), камеру высокотемпературной зоны (6) и изоляцию (3, 16);

· механизм вытягивания кристалла, включающий в себя стержень с затравкой (5), меха­низм вращения затравки (1) и устройство ее зажима, устройство вращения и подъема тигля (11);

· устройство для управления составом атмосферы (4 - газовый вход, 9 - выхлоп, 10 - ваку­умный насос);

· блок управления, состоящий из микропроцессора, датчиков температуры и диаметра растущего слитка (13, 19) и устройств вв ода;

· дополнительные устройства: смотровое окно - 17, кожух - 2.

Технология процесса

Затравочный монокристалл высокого качества опускается в расплав кремния и одновременно вращается. Получение рас­плавленного поликремния происходит в тигле в инертной атмосфере при температуре, незначительно превосходящей точку плавления кремния Т = 1415 °С. Тигель вращается в направлении противоположном вращению монокристалла для осуществ­ления перемешивания расплава и сведению к минимуму неоднородности распределения температуры.

В начале процесса роста монокристалла часть затравочного монокристалла расплавляется для устранения в нем участков с повышенной плотностью механических напряжений и дефектами. Затем происходит постепенное вытягивание монокристалла из расплава.

Легирование осуществляется введением определенного количества примесей в расплав. Требования к деталям оборудования. Тигель изготавливается из химически инертного, прочного материала с высокой температурой плавления. Обычно используют кварц SiO2, который для уменьшения концентрации кислорода в растущем монокристалле кремния покрывают слоем нитрида кремния. Карбиды кремния или тантала не используют из-за большого содержания углерода, способного проникнуть впослед­ствии в кремний.

Нагрев кремния осуществляют резистивным или индукционным способом. При этом графитовый нагреватель соединяют с источником постоянного напряжения или помещают в переменное электромагнитное поле.

Процесс выращивания кремния происходит в инертной атмосфере или в вакууме. Общий вид оборудования приведен на ри­сунке.

Окончательная обработка кремния

Из установки извлекают кремниевый слиток диаметром 20 - 50 см и длиной до 3 метров. Для по­лучения из него кремниевых пластин заданной ориентации и толщиной в несколько десятых милли­метра производят следующие технологические операции:

1. Механическая обработка слитка:
- отделение затравочной и хвостовой части слитка;
- обдирка боковой поверхности до нужной толщины;
- шлифовка одного или нескольких базовых срезов (для облегчения дальнейшей ориентации в технологических установках и для определения кристаллографической ориентации);
- резка алмазными пилами слитка на пластины: (100) - точно по плоскости (111) - с разориента­цией на несколько градусов.

2. Травление. На абразивном материале SiC или Al 2 O 3 удаляются повреждения высотой более 10 мкм. Затем в смеси плавиковой, азотной и уксусной кислот, приготовленной в пропорции 1:4:3, или раствора щелочей натрия производится травление поверхности Si .

3. Полирование - получение зеркально гладкой поверхности. Используют смесь полирующей суспензии (коллоидный рас­твор частиц SiO2 размером 10 нм) с водой.

В окончательном виде кремний представляет собой пластину диаметром 15 - 40 см, толщиной 0.5 - 0.65 мм с одной зеркаль­ной поверхностью. Вид пластин с различной ориентацией поверхности и типом проводимости приведен на рисунке:

Эпитаксия.

· Эпитаксия - процесс выращивания тонких монокристаллических слоев на монокристаллических подложках. Материал под­ложки в этом процессе выполняет роль затравочного кристалла.

· Эпитаксия из из газовой фазы

§ Выращивание кремния проводится в потоке парогазовой смеси (силан + водород) при высоких температурах. Для легирова­ния обычно используют гидриды примесных элементов.

§ проводится в вакууме и основана на взаимодействии нескольких молекулярных пучков с нагретой монокристаллической под­ложкой. Сущность процесса состоит в испарении кремния и одной или нескольких легирующих примесей. Низкой давление паров кремния и легирующих примесей гарантирует их конденсацию на относительно холодной подложке. Обычно проводят в сверхвысоком вакууме при давлении 10 -6 - 10 -8 Па. Температурный диапазон составляет 400 - 800 °С.

· Низкая температура процесса.

· Высокая точность управления уровнем легирования.

§ кремний на изоляторе (КНИ). В случае синтезирования монокристаллического кремния на диэлектрической подложке исче­зает необходимость в создании изолирующих p-n переходов между элементами ИС. Как разновидность метода КНИ используется технология кремний на сапфире (КНС) Al 2 O 3 .

§ Гетеропереходы.

Эпитаксия из газовой фазы.
Идея метода, схема реактора.

Термин "эпитаксия" применяют к процессам выращивания тонких монокристаллических слоев на монокристаллических подложках. Материал подложки в этом процессе выполняет роль затравочного кристалла.

Если материалы получаемого слоя и подложки идентичны, например, кремний выращивают на кремнии, то процесс назы­вают автоэпитаксиальным или гомоэпитаксиальным . Если же материалы слоя и подложки различаются (хотя их кристалличе­ская структура должна быть сходной для обеспечения роста монокристаллического слоя), то процесс называют гетероэпитак­сиальным .

Эпитаксиальное выращивание кремния из парогазовой фазы обычно проводят в реакторе, изготовленном из стеклообразного кварца, на помещенном внутри него пьедестале (подложкодержателе ). Пьедестал служит для установки подложек и их нагрева во время процесса. Выращивание кремния проводится в потоке парогазовой смеси при высоких температурах.

Для выращивания эпитаксиального кремния используется один из четырех кремнесодержащих реагентов (тетрахлорид кремния - SiCl 4 , трихлорсилан - SiHCl 3 , дихлорсилан - SiH 2 Cl 2 и силан - SiH 4) и водород. При таких условиях возможно проте­кание химических реакций типа SiCl 4 + 2H 2 = Si тв + 4HCl.



Схема реактора для эпитаксии из парогазовой смеси.

1- держатель; 2- кремниевая пластина; 3- пленка.

Газ разлагается на поверхности пластины и на нее осаждаются атомы кремния. Разложение кремнесодержащих компонент происходит пиролитически , т.е. только за счет тепла. Скорость роста пленки пропорциональна парциальному давлению силана . Все вещества, поступающие в реактор являются газами, отсюда и название "химическое осаждение из газовой фазы".

Молекулярно-лучевая эпитаксия

· Низкая температура процесса. Снижение температуры процесса уменьшает диффузию примеси из подложки и автоле­гирование . Это позволяет получать качественные тонкие слои.

· Высокая точность управления уровнем легирования. Легирование при использовании данного метода является без­инерционным (в отличие эпитаксии из газовой фазы), что позволяет получать сложные профили легирования.

Сущность процесса состоит в испарении кремния и одной или нескольких легирующих примесей. Низкой давление па­ров кремния и легирующих примесей гарантирует их конденсацию на относительно холодной подложке. Обычно МЛЭ проводят в сверхвысоком вакууме при давлении 10 -6 - 10 -8 Па. Температурный диапазон составляет 400 - 800 °С.

Основой установки является вакуумная система. Так как в процессе МЛЭ требуется поддерживать высокий вакуум, уста­новки снабжаются вакуумными шлюзами для смены образцов, что обеспечивает высокую пропускную способность при смене пластин и исключает возможность проникновения атмосферного воздуха. Для обеспечения высокого качества и чистоты расту­щего слоя необходимо низкое давление. Этого добиваются, используя безмасляные средства откачки (например, титановый гет­терный насос). Метод МЛЭ позволяет проводить всесторонний анализ некоторых параметров непосредственно во время про­цесса выращивания пленки. Испарение кремния осуществляется не путем нагрева тигля, как для легирующих элементов, а за счет нагрева электронным лучом, т. к. температура плавления кремня относительно высока.


Рис. 2. Схема установки для МЛЭ

1-термопара; 2-кварцевый кристалл-измеритель толщины; 3-тепловой экран; 4-нагреватель; 5-подложка; 6-держатель; 7-окно для визуального наблюдения; 8-масс-спектрометр; 9-инизационный вакуумметр; 10-механический затвор; 11-источник сурьмы; 12-электронная пушка и источник кремния; 13-титановый геттерный насос; 14-турбокомпрессионный насос.

Создание диэлектрических слоев.

Осаждение диэлектрических пленок широко используется для производства СБИС. Эти пленки:

o формируют непроводящие участки внутри схемы,

o выполняют роль электрического изолятора между металлами,

o защищают поверхность от воздействия окружающей среды.

Двуокись кремния

Диэлектрическая постоянная 3,82, Ширина запрещенной зоны 8,9 эВ, Удельное сопротивление 10 14 -10 16 Ом·см

Слои SiO 2 используются как:

· маска для диффузии легирующих примесей;

· для пассивации поверхности полупроводников;

· для изоляции отдельных элементов СБИС друг от друга;

· в качестве подзатворного диэлектрика;

· в качестве одного из многослойных диэлектриков в производстве МНОП элементов памяти;

· в качестве изоляции в схемах с многослойной металлизацией;

· как составная часть шаблона для рентгеновской литографии.


Пленки SiO 2 в микроэлектронной промышленности получают путем окисления кремния различными способами:

· термическое окисление (сухое, влажное, хлорное, пирогенное);

· анодное окисление;

· пиролитическое окисление;

· плазмохимическое окисление.

процесс окисления происходит при средних температурах (1000 °C) с использованием сухого кислорода иногда с до­бавлением соляной кислоты в окислительную среду. Второй этап заключается в термообработке в атмосфере при темпе­ратуре 1150 °C для проведения пассивирования и доведения толщины окисла до необходимого уровня.

Нитрид кремния

Стехиометричный Si 3 N 4 используют для пассивирования поверхности полупроводниковых приборов или активная среда в МНОП РПЗУ

Получают аммонолизом моносилана при атмосферном давлении и температуре 700 - 900 °C. Удельное сопротивление 10 16 Ом·см, плотность 2.9 - 3.1 г/см 3 , диэлектрическая постоянная 6-7, ширина запрещенной зоны 5 эВ


Пиролитический метод формирования пленок основан на использовании явления пиролиза или химических реакций при фор­мировании пленок поликристаллического кремния или пленок различных изолирующих материалов. В качестве химически активного газа применяют моносилан SiH 4 и кислород, а в качестве буферного газа - азот (обычно пьедестал и пластины соприкасаются и разогреваются). При формировании пленок поликристаллического кремния пластина должна быть разогрета до 600 - 650 °С , а пленок нитрида кремния до 750 - 800 °С. Если нагрев пластин нежелателен, то используют альтернативные методы получения пленок (например, плазмохимический метод).

Процессы плазменного окисления металлов и полупроводников заключается в формировании на их поверхности оксидных слоев при помещении подложек-образцов в кислородную плазму. Образцы могут быть изолированными (плазменное оксидирование) или находиться под положительным относительно плазмы потенциалом (плазменное анодирование).


Горизонтальный реактор


Создание p-n переходов..

Диффузия в полупроводниках это процесс последовательного перемещения атомов примеси в кристаллической решетке, обусловленной тепловым движением. Для изготовления р-n перехода используется химическая диффузия примесных атомов, которые вводятся в кристаллическую решетку вещества для изменения его электрофизических свойств.
Назначение диффузии:

· формирование базовых и эмиттерных областей и резисторов в биполярной технологии,

· создание областей истока и стока в МОП технологии,

· для легирования поликристаллического кремния.

Способы диффузии:

· диффузия из химического истока в парообразной форме при высоких температурах,

· диффузия из легированных окислов,

· диффузия из ионно-имплантированных слоев с последующим отжигом (проводится для активирования имплантации атомов и уменьшения числа дефектов).

Ионная имплантация

Ионной имплантацией называется процесс внедрения в мишень ионизованных атомов с энергией, достаточной для проникновения в ее приповерхностные области. Успешное применение ионной имплантации определяется главным образом возможностью предсказания и управления электрическими и механическими свойствами формируемых элементов при заданных условиях имплантирования . Распределение внедренных атомов по глубине мишени оценивается с помощью симметричной функции распределения Гаусса. Общая длина пробега иона зависит от его энергии и массы. Эффект каналирования . Для снятия радиационных дефектов применяют отжиги. Параметры процесса отжига определяются дозой и видом имплантированных ионов.

Литография.

· Фоторезисты . Шаблоны.

В качестве негативного резиста при оптической литографии применяют циклополиизопреновый полимер

· Оптическая литография.

Основными методами оптического экспонирования являются контактный , бесконтактный и проекционный. Характеристики точности отображения проекционных систем печати ограничены дифракционными эффектами.

· Электронно-лучевая литография


Существуют две основные возможности использования электронных пучков для облучения поверхности пластины с целью нанесения рисунка -о дновременное экспонирование всего изображения целиком и последовательное экспонирование (сканирование) отдельных участков рисунка. Ограничения на ширину линий и плотность упаковки определяются не столько работой электронного пучка, сколько разрешающей способностью резиста и возможной точностью совмещения шаблона с пластиной.

· Рентгеновская литография.

Рентгеновская литография является разновидностью оптической бесконтактной печати, в которой длина волны экспонирующего облучения лежит в диапазоне 0.4 - 5 нм.

Методы оптической литографии

Основными методами оптического экспонирования являются контактный , бесконтактный и проекционный.

Контактная печать. При контактной печати (см . рис. 1) пластина кремния, покрытая резистом , находится в непосредственном физическом контакте со стеклянным фотошаблоном.

1- источник света 2- оптическая система 3- шаблон 4- фоторезист 5- кремниевая пластина 6-зазор

Для того чтобы провести совмещение топологического рисунка фотошаблона с предыдущим, вытравленным в кремнии топологическим рисунком, шаблон и пластину разводят на 25 мкм, а пару объективов с сильным увеличением помещают сзади шаблона для одновременного наблюдения рисунков шаблона и пластины из двух точек.

Метод бесконтактного экспонирования схож с методом контактной печати, за исключением того, что во время экспонирования между пластиной и шаблоном поддерживается небольшой зазор шириной 10-25 мкм.

Третий метод экспонирования - проекционная печать (см . рис. 3) позволяет полностью исключить повреждения поверхности шаблона. Изображение топологического рисунка шаблона проецируется на покрытую резистом пластинку, которая расположена на расстоянии нескольких сантиметров от шаблона.

1- источник света 2- оптическая система 3- шаблон 4- фоторезист 5- кремниевая пластина

Для достижения высокого разрешения отображается только небольшая часть рисунка шаблона. Это небольшая отражаемая область сканируется или перемещается по поверхности пластины. В сканирующих проекционных устройствах печати шаблон и пластина синхронно перемещаются. С помощью этого метода достигается разрешение порядка 1,5 мкм ширины линий и расстояния между ними.

Фоторезисты

В качестве негативного резиста при оптической литографии применяют циклополиизопреновый полимер, смешанный с фоточувствительным соединением. Сенсибилизатор, или фотоинициатор активируется при поглощении энергии в диапазоне длин волн 200-450 нм. Активированный сенсибилизатор передает энергию молекулам полимера, что способствует образованию поперечных связей между цепочками полимера. Увеличение молекулярного веса полимера приводит к нерастворимости резиста в проявителе. При проявлении пленка негативного резиста разбухает, а его неэкспонированные области с низким молекулярным весом растворяется в проявителе. Позитивные резисты также состоят из основного полимерного материала и фотосенсибилизатора , но абсолютно по-другому реагируют на воздействие экспонирующего облучения. Сенсибилизатор нерастворим в водном растворе проявителя и, следовательно, предотвращает растворение основного полимерного материала.

Проекционная литография

Существуют две основные возможности использования электронных пучков для облучения поверхности пластины с целью нанесения рисунка. Это одновременное экспонирование всего изображения целиком и последовательное экспонирование (сканирование) отдельных участков рисунка.

Проекционные системы, как правило, имеют высокую производительность и более просты, чем сканирующие системы. Носителем информации об изображении является маска (шаблон). Изображение с шаблона передается на пластину лучом электронов.

Сканирующие системы управляются вычислительной машиной, которая задает программу перемещения сфокусированного пучка электронов для нанесения рисунка, исправляет эффекты дисторсии и расширения пучка и определяет положение пластины. Непосредственное нанесение рисунка с помощью ЭВМ позволяет обойтись без шаблона. Поэтому электронно-лучевые сканирующие системы могут быть использованы как для изготовления шаблонов, так и для непосредственной прорисовки на пластине. Эти установки имеют высокое пространственное расширение и точность совмещения, приближающиеся к 0,1 мкм.

Рентгеновская литография является разновидностью оптической бесконтактной печати, в которой длина волны экспонирующего облучения лежит в диапазоне 0.4 - 5 нм. Несмотря на то, что при рентгеновской литографии используется бесконтактная экспонирующая система, проявление дифракционных эффектов уменьшено за счет малой длины волны рентгеновского излучения. Основная причина разработки метода рентгеновской литографии заключалась в возможности получения высокого разрешения и в то же время высокой производительности оборудования. Рентгеновские шаблоны состоят из поглощающих рентгеновское излучение металлических пленок с нанесенным на них рисунком и тонкой мембраны, пропускающей рентгеновские лучи.

Травление.

Для формирования топологии схемы необходимо перевести рисунки резиста в соответствующие слои полупроводниковой структуры. Один из методов такого перевода заключается в селективном удалении немаскированных участков резиста . Этот процесс называют травлением.

1. Химическое травление

2. Методы плазменного травления

3.2. Металлизация с использованием источников резистивного нагрева

3. Металлизация с использованием электронно-лучевого испарения

4. Металлизация с использованием источников индукционного нагрева

5. Металлизация с использованием ионного распыления

6. Металлизация с использованием магнетронного источника Методы сборки и герметизации

Один из основных методов монтажа кристаллов является соединение его с корпусом твердыми припоями (или эвтектикой).
Ультразвуковая сварка С помощью пуансона проволока прижимается к контактной площадке подложки, при этом к пуансону прикладываются УЗ колебания перпендикулярно направлению приложения давления с частотой 20...60 кГц.
Соединение проволокой может быть выполнено золотой проволокой методом термокомпрессии , ультразвуковым и термозвуковым методами или алюминиевой проволокой ультразвуковым методом.

Для герметизации ИС обычно используют эпоксидные смолы и кремнийорганические соединения.
Основной целью герметизации корпуса является защита от внешних загрязнений во время функционирования прибора. Почти для всех высококачественных корпусов герметизацию выполняют стеклом или металлом.

Описание схемы

1. Номиналы пассивных элементов:

R6 = R11 = 4.7 кОм

  • 2. Т1, Т2, Т3, Т4, Т5 - n-p-n транзисторы ИС; Т6 - p-n-p транзистор ИС;
  • 3. с=200 Ом/кВ
  • 4. Напряжение питания 15В
  • 5. Технология планарно-эпитаксиальная.
  • 6. Изоляция p-n переходом.

Вывод 6 - питание; вывод 1 - земля.

Технология изготовления ИМС

Любые элементы полупроводниковых ИМС можно создать на основе максимум трех p-n-переходов и четырех слоев двух типов электропроводности (электронной и дырочной). Изоляция элементов часто осуществляется с помощью обратно смещенного p-n- перехода. Принцип этого способа изоляции заключается в том, что подачей большого отрицательного потенциала на p-подложку получают обратно смещенный p-n-переход на границе коллекторных областей и p-подложки. Сопротивление обратно смещенного p-n- перехода большое и достигает МОм, поэтому получается хорошая изоляция элементов друг от друга.

Технология производства полупроводниковых ИМС представляет собой сложный процесс, включающий десятки операций, и описать его полностью в кратком методическом пособии и курсовой работе невозможно.

Поэтому мы рассмотрим сокращенный маршрут изготовления ИМС с изоляцией элементов и обратно смещенными p-n-переходами методом планарно-эпитаксиальной технологии. Операция изоляции элементов осуществляется групповым методом, сочетается с технологией изготовления ИМС в целом и реализуется методом разделительной (изолирующей) диффузии на всю глубину эпитаксиального слоя. Эта технология позволяет получать необходимую степень легирования коллектора и подложки независимо друг от друга. При выборе высокоомной подложки и не очень высокоомного эпитаксиального слоя (коллектора) можно обеспечить оптимальные емкости перехода коллектор-база и его напряжение пробоя. Наличие эпитаксиального слоя позволяет точно регулировать толщину и сопротивление коллектора, которое, однако, остается достаточно высоким (70-100 Ом). Снижение сопротивления коллектора достигается созданием высоколегированного скрытого n + -слоя путем диффузии в p-подложку примеси n-типа перед наращиванием эпитаксиального слоя. Этот слой обеспечивает низкоомный путь току от активной коллекторной зоны к коллекторному контакту без снижения пробивного напряжения перехода коллектор-база.

Последовательность операций планарно-эпитаксиальной технологии производства биполярных полупроводниковых ИМС с изоляцией элементов p-n- переходами:

  • 1) Механическая обработка поверхности рабочей стороны кремниевой пластины p-типа до 14-го класса чистоты и травление в парах HCl для удаления нарушенного слоя. Сначала пластины Si шлифуют до заданной толщины, затем полируют, подвергают травлению и промывают.
  • 2) Окисление для создания защитной маски при диффузии примеси n-типа. На поверхности кремния выращивается плотная пленка двуокиси кремния (SiO2), которая имеет близкие к кремнию коэффициент теплового расширения, что позволяет использовать ее как маску при диффузии. Наиболее технологичным методом получения пленок SiO2 является термическое окисление поверхности кремния. В качестве окисляющей среды используется сухой или увлажняющий кислород либо пары воды. Температура рабочей зоны при окислении 1100-1300С. Окисление проводится методом открытой трубы в потоке окислителя. В сухом кислороде выращивается наиболее совершенный по структуре окисный слой, но процесс окисления при этом проходит медленно (при Т=1200С, толщина слоя SiO2 составляет 0,1 мкм). На практике целесообразно проводить окисление в три стадии: в сухом кислороде, влажном кислороде и снова в сухом. Для стабилизации свойств защитных окисных слоев в процессе окисления в среду влажного кислорода или паров воды добавляют борную кислоту, двуокись титана и др.

3) Фотолитография для вскрытия окон в окисле и проведение локальной диффузии в местах формирования скрытых слоев (рис. 3). Фотолитография это создание на поверхности подложки защитной маски малых размеров практически любой сложности, используемой в дальнейшем для проведения диффузии, эпитаксии и других процессов. Образуется она с помощью специального слоя, который называется фоторезист - материал, который меняет свою структуру под действием света. По способности изменять свойства при облучении фоторезисты бывают негативные и позитивные.

Фоторезист должен быть чувствительным к облучению, иметь высокую разрешающую способность и кислотостойкость.

На окисленную поверхность кремния с толщиной окисла 3000-6000 Г наносят слой фоторезиста с помощью центрифуги. Фоторезист сушат сначала при комнатной, затем при температуре 100-150 С.

Подложку совмещают с фотошаблоном и освещают. Засвеченный фоторезист проявляют, а затем промывают в деионизированной воде. Оставшийся фоторезист задубливают при комнатной температуре и температуре 200С в течении одного часа, после чего окисленная поверхность кремния открывается в местах, соответствующих рисунку фотошаблона.

4) Диффузия для создания скрытого n+ слоя (рис. 4). Локальная диффузия является одной из основных технологических операций при создании полупроводниковых ИМС. Процесс диффузии определяет концентрационный профиль интегральной структуры и основные параметры компонентов ИМС. Диффузия в полупроводниковых кристаллах представляет собой направленное перемещение примесных атомов в сторону убывания их концентрации. При заданной температуре скорость диффузии определяется коэффициентом диффузии, который равен числу атомов, проходящих через поперечное сечение в 1 см2 за 1 с при градиенте концентрации 1 см-4. В качестве легирующих примесей в кремнии используется в основном бор и фосфор, причем бор создает примеси акцепторного типа, а фосфор-донорного. Для бора и фосфора энергия активации соответственно равна 3,7 и 4,4 эВ.

В производстве ИМС реализуют два типа диффузии. Диффузия из неограниченного источника представляет собой первый этап диффузии, в результате которого в полупроводник вводится определенное количество примеси. Этот процесс называют загонкой примеси .

Для создания заданного распределения примеси в глубине и на поверхности полупроводника проводится второй этап диффузии из ограниченного источника. Этот процесс называется разгонкой примеси .

5) Снятие окисла и подготовка поверхности перед процессом эпитаксии (рис. 5).

6) Формирование эпитаксиальной структуры (рис. 6). Эпитаксия представляет собой процесс роста монокристалла на ориентирующей подложке. Эпитаксиальный слой продолжает кристаллическую решетку подложки. Толщина его может быть от монослоя до нескольких десятков микрон. Эпитаксиальный слой кремния можно вырастить на самом кремнии. Этот процесс называется авто- или гомоэпитаксия. В отличии от автоэпитаксии процесс выращивания монокристаллических слоев на подложках, отличающихся по химическому составу, называется гетероэпитаксией.

Эпитаксиальный процесс позволяет получать слои полупроводника, однородные по концентрации примесей и с различным типом проводимости (как электронным, так и дырочным). Концентрация примесей в слое может быть выше и ниже, чем в подложке, что обеспечивает возможность получения высокоомных слоев на низкоомной подложке. В производстве эпитаксиальные слои получают за счет реакции на поверхности подложки паров кремниевых соединений с использованием реакций восстановления SiCl 4 , SiBr 4 . В реакционной камере на поверхности подложки в температурном диапазоне 1150-1270С протекает реакция

SiCl4+2H2=Si+4HCl,

в результате которой чистый кремний в виде твердого осадка достраивает решетку подложки, а летучее соединение удаляется из камеры.

Процесс эпитаксиального наращивания проводится в специальных установках, рабочим объемом в которых является кварцевая труба, а в качестве газа-носителя используется водород и азот.

Толщина эпитаксиального слоя n-типа составляет 10-15 мкм с удельным сопротивлением 0,1-10 Ом*см. В эпитаксиальном слое формируются коллекторы транзисторов и карманы резисторов.

7) Окисление поверхности эпитаксиального слоя для создания защитной маски при разделительной диффузии (рис. 7).

8) Фотолитография для вскрытия окон под разделительную диффузию (рис. 8).

9) Проведение разделительной диффузии и создание изолированных карманов (рис. 9).

Разделительная диффузия проводится в две стадии: первая (загонка)- при температуре 1100-1150С, вторая (разгонка)- при температуре 1200-1250С. В качестве диффузанта используется бор. Разделительная диффузия осуществляется на всю глубину эпитаксиального слоя; при этом в подложке кремния формируются отдельные области полупроводника, разделенные p-n-переходами. В каждой изолированной области в результате последующих процессов формируется интегральный элемент.

10) Окисление поверхности для проведения фотолитографии под базовую диффузию (рис. 10).

11) Фотолитография для вскрытия окон под базовую диффузию (рис. 11).

12) Формирование базового слоя диффузией примеси p-типа (рис. 12).

13) Окисление поверхности для проведения четвертой фотолитографии (рис. 13).

14) Фотолитография для вскрытия окон под эмиттерную диффузию (рис. 12).

15) Формирование эмиттерного слоя диффузией примеси n-типа, а также последующее окисление поверхности (рис. 15).

Эмиттерная диффузия проводится в одну стадию при температуре около 1050С. Одновременно с эмиттерами формируются области под контакты коллекторов. В качестве легирующей примеси используется фосфор. Толщина слоя d ? 0,5-2,0 мкм, концентрация акцепторов N ?10 21 cм -3 Используется для создания эмиттеров транзисторов, низкоомных резисторов, подлегирования коллекторных контактов и др.

16) Пятая фотолитография для вскрытия контактных окон (рис. 16).

17) Напыление пленки алюминия (рис. 17).

Соединения элементов ИМС создаются металлизацией. На поверхность ИМС методом термического испарения в вакууме наносится слой алюминия толщиной 1 мкм.

18) Фотолитография для создания рисунка разводки и нанесение слоя защитного диэлектрика (рис. 18).

После фотолитографии металл обжигается в среде азота при температуре 500С.

Расчет интегральных компонентов